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I. INTRODUCTION

In the design and analysis of engineering structures an accurate knowledge

of inputs, structural material properties, and structural configuration is

important, for it is only when this information is available that structural

behavior can be accurately predicted and efficient structural designs can be

produced. For practical reasons, it is necessary to make certain assumptions

which simplify the analysis of structural systems. Only when simplifying

assumptions are made is a practical solution possible for the mathematical

equations governing the response ofA structure. These generally reduce the

accuracy of an analysis.

In the past, structural analyses and designs were performed using the

simplifying assumption that nature is deterministic. Structural excitations,

structural material properties and structural configurations were assumed to be

nonrandom. As a result, some experimental and field experiences could not be

easily explained. For example, it is difficult to account for the different

failure strengths of different test specimens when nominally identical speci-

mens are tested in nominally identical experiments. In some cases, it is only

through consideration of random system behavior that real system experience can

be quantitatively characterized.

In recent times, analytical techniques which take into account the random

variation in mechanical systems and their inputs have been suggested. Numerous

papers have been written on the subject of reliability of structures. Several

of these deal with the problem of a static random load applied to a structure

with random material properties. Others deal with the computation of response

statistics of deterministic structures subjected to random dynamic loads.

The reliability of a structure is defined as the probability that the

structure will perform in a satisfactory manner over a preestablished length of

time. In computing structural reliability, we often define the reliability of

a structure as the probability that it will survive, in a physical sense, over

some intended life span. To discuss structural survival we must define

the structural failure condition. Structural failure can be defined in a wide

variety of ways. For example, at one extreme, catastrophic collapse of a

structure can be used to define failure. At the other extreme, structural

5
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1. PROBLEM DEFINITION

This report discusses methods for finding the probability of failure, or,

equivalently, the reliability of a complex structure. In principle, it is

possible to perform a reliability analysis on any structure which can be ana-

lyzed deterministically if the character of the random inputs and of the struc-

ture are known. In practice it may be difficult or expensive to execute some

analyses.

In this report, failure is defined in terms of a peak value of response

motion, or a peak value of a function of response motion, at one or more points

on a structure. That is, failure is assumed to occur when some measure of the

response exceeds a "failure level." Then the probability of failure is simply

the chance that the measure of response surpasses the failure level. This

response measure could be stress, strain, acceleration, moment, shear, etc., at

a point. The purpose of this report is to demonstrate practical methods for

computing this probability.

Note that it is important to maintain a consistent set of measures when

considering the potential for failure at a point. For example, if a particular

loading excites a peak stress of 30 x 107 Pa at a point on a structure, then it

is necessary to determine the failure stress, in pascals, for the material at
7that point. This may be, for example, 35 x 10 Pa. If the response that a load

excites is a moment measured in foot pounds, then the moment, in foot pounds,

that can be carried at a point, before failure occurs, must be determined. If

the response that an input excites is a force measured in kips, then the peak

load, in kips, that a section can carry must be measured, etc. This report

often associates the structural response excited by an input with the loading,
and the load that can be carried at a point with the structural strength. So,

using the first example in this paragraph, 30 x 10 Pa would be the load stress,

and 35 x 107 Pa would be the structural strength.

This report shows how the analyst can consider any mode of failure in a

structure as long as he can determine the load at any point on a stucture, and

what level of load will excite a failure in the mode of interest. In this way,

the analyst can use the techniques presented here to find the probability of

failure in a nonlinear mode, but this will involve nonlinear structural

analysis.

7
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Considered in this report are: (1) static and dynamic loads on a

structure; (2) the general case of many repetitions of a static load; and (3)

steady state and transient dynamic loads.

8
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I1. FUNDAMENTAL CONCEPTS IN PROBABILITY,

RANDOM PROCESSES AND RELIABILITY

This section provides the fundamental concepts necessary for the perfor-

mance of a structural reliability analysis. First, the probability concepts

used in computing the reliability of a structure at a point are outlined, and

examples are given for the important normal distribution case. Second, the

formulas necessary for obtaining reliability analysis inputs from random process

parameters are presented. Finally, the guidelines for performing a reliability

analysis of a complex structure are presented.

This section uses two concepts important in structural reliability

analysis: structural load and structural strength. When a structure is excited

by external forces, it executes a mechanical response. The overall response

deformation of a structure induces loads in the structural members. These loads

can be measured in units of stress, strain, moment, force, etc. When a loaded

member possesses sufficient strength to support an applied force, then the

member survives. For consistency, the strength of a member is measured in the

same units used to measure the load. Even though load and strength can be

measured in several different ways, this report usually refers to the load

stress at a point and to the structural material strength. Our understanding

is that load and strength can be measured ih any appropriate way in an actual

problem.

Note that, in the solution of a particular problem, the forces induced at

specific points must be determined. Therefore, structural analyses must be

performed. For most complicated structures, finite element analyses can be used

to accurately determine the structural response at a point.

1. PROBABILITY CONCEPTS

a. Random experiment, random variable, PDF, CDF--When a mechanical experi-

ment is performed, one or more outcomes can be measured and recorded. If an

attempt is made to duplicate the experiment, the outcomes will vary from the

first experiment to the next. The differences in the outcomes may be great or

small, but they will always be present because of the randomness in nature.

When randomness has a relatively small effect on experimental outcome, it can

be ignored; otherwise It must be considered in design and analysis.

9
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To discuss probability and randomness we define the random experiment. A

random experiment is an experiment whose outcome is uncertain. For example, a

random experiment might consist of flying an airplane in a specified way, under

specific conditions, for a specified time duration. Some typical outcomes of

this random experiment may be the following. The peak stress at one location

near the root of the left wing experienced during the flight is equal to 3 x 108

Pa. Or, the peak acceleration at the center of gravity of the airplane

experienced during the flight is equal to 5 g. Practically an infinite number

of outcomes can be defined for a random experiment such as that given above.

Each outcome constitutes a random event, and every well-defined collection of

outcomes constitutes a random event. For example, a random event might be

defined as follows. The peak acceleration that the center of gravity of the

airplane experiences during the flight is in the range (4 g, 6 g]. This

includes the uncountable infinity of outcomes in the range (4 g, 6 g].

The probability of an event is a number between zero and one, and it

reflects the relative chanc of occurrence of an event. An event which has no

chance of occurrence has zero probability, and a sure event has probability one.

For example, we might find as the result of analysis that the probability of the

event defined above (i.e., that the peak acceleration the center of gravity of

an airplane experiences during a flight is in the range (4 g, 6 g]) is equal to

0.85. This result means that "on the average," if we performed a large number

of the random flight experiments, approximately 85 percent of these would yield

a peak acceleration in the range (4 g, 6g]. We say "on the average," because

the experimental outcomes are random and there is no guarantee the event in

question will be realized 85 percent of the time whenever a finite sequence of

experiments is performed. Further, note that the probability value of 0.85 is a

quantity which relates to the structure of an experiment, and has nothing to do

with the number of experiments performed. The probability of occurrence of two

events which cannot occur simultaneously is the sum of the probabilities of the

individual events.

The random variable is the fundamental entity used to quantify the outcomes

of a random experiment. Generally, a capital letter denotes a random variable.

So, for example, let X be the peak acceleration at the center of gravity of an

airplane during the flight, with specified parameters, described previously.

The random variable, X, can take certain values and we denote these using the

10
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lower case letters corresponding to the random variable. The values, x, that

the random variable, X, can take are called the realizations of the random

variable. The event defined previously (i.e., that the peak acceleration the

center of gravity of an airplane experiences during a flight is in the range

(4 g, 6 g]) is stated as follows in terms of the random variable.

4 g < X 6 g (1)

The probability of this event is expressed

P(4 < X 4 6) (2)

The probabilistic behavior of a random variable, X, can be defined using

either of two functions. We start by defining the probability density function

(pdf). The pdf of a random variable, X, is denoted px(x), and this is defined

implicitly using the following integral.

P(xI < X x2 ) = p xX)dx (3)

Xd

The probability that a random variable, X, has a realization in (x1, x2 ], as the

result of a random experiment, is given by the above integral. Since a probabi-

lity must be equal to or greater than zero, and a probability must be less than

one, a valid pdf must satisfy the following equation.

pX(x) > <-- x < (4a)

_* pX(x) dx = 1 (4b)

As the result of single random experiment, the realization of a random variable,

X, cannot be within both of the intervals, (x1, x2 ] and (x3 , x4 1, if the inter-
vals do not overlap. Therefore, the probability that the realization lies in

(x1, x21 or (x3 , x4] is the probability that the realization is in (xj, x2] plus

the probability that the realization is in (x3 , x41. Using the symbol u to

denote the operation, "or," we can write

I1
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P(x1 < X - x2 U x3 < X 4x ) = P(x1 < X < x2 ) + P(x3 < X C x4)

= 12 Px(x)dx + 14 Px(X)d x  
(5)

An alternate, and equivalent, means for defining the probabilistic behavior

of a random variable is through use of the cumulative distribution function

(cdf). The cdf of the random variable, X, is denoted Px(x), and is defined

Px(X) = P(X 4 x) = fx PX(a)da "= , x < (6)
f.

This is simply the chance that the realization of a random variable resulting

from a random experiment is equal to or lower than x. Because of the restric-

tions on a probability and the requirements imposed on a pdf, we can write the

following restrictions on a cdf

Px(X) ) 0 -m< x < (7a)

PX(-)= P() = (7b)

We can also express the probability that the realization of X falls in the

interval (xj, x2j using the cdf. It is

P(xI < X C x2) = Px(X2) - Px(X ) (8)

From this expression it is clear that the inequalities in the left hand

expression and in Equation 3 take the form they do because of the way the cdf

is defined in Equation 6. By differentiating the cdf in Equation 6 we obtain

dx

Equations 6 and 9 establish the relation between the pdf and cdf of a random

variable.

We now present an example. Let X be the random variable defined pre-

viously, i.e., the peak acceleration at the center of gravity of an airplane

during a flight with specified parameters. Let X have the pdf

PX(X) =J.2eO
2x x0 (10)

x<0

12
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The graph of this function is shown in Figure 1. The cdf of X is obtained by

integrating the pdf; it is
1 - e "O' 2x x > 0

Px(x) = 10 e x< (11)

- The graph of the cdf is shown in Figure 2. The probability of the event 4q <

x < 6g], is evaluated as follows:

P(4 < X e 6) = Px(6) - PX( 4 ) = (1 - e02(6))

- - e"0 '2(4)) = 0.148 (12)

b. Mean, variance, standard deviation--While the pdf and cdf of a random

variable completely define the probabilistic character of the random variable,

it is sometimes difficult to obtain an intuitive feeling for the values which a

random variable is "most likely" to assume "on the average," by inspection of

the mathematical functions. Therefore, we define the moments of a random

variable. The fundamental moment is the mean, or expected value, and for a ran-

dom variable, X, with pdf pX(x), this is defined

EEX] X = ox xpx(x)dx (13)

Clearly, this is the center of gravity of the pdf and defines the central value,

or average value, of the random variable, X.

A moment which is an indicator of the dispersion of the realizations of the

random variable is its variance. This is defined

V[X] = Ox2 = (x - pX) 2 PX(x)dx (14)

If the random variable, X, has a substantial probability mass concentrated away

from its mean, then the variance will be relatively large. If the probability

mass of X is concentrated closely about the mean, then the variance will be

relatively small.

The standard deviation is defined as the square root of the variance.

13
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0.2

P1c (X) 0. 1

0.0
0.0 5.0 10.0

Figure 1. The pdf of the random
variable, X.

0.1

P1(X) 0.5

0.0
0.0 5.0 10.0

Figure 2. The cdf of the random

variable, X.
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This quantity has the same units as X and is a measure of the spread of the

probability mass about the mean.

Finally, the mean square is a moment which measures the spread of proba-

bility mass about the origin. It relates to the variance and the mean as

follows.

E[X2 ] = V[X] + (E[X]) 2  (16)

From Equation 14, the variance is seen to be always nonnegative; therefore,

E[X 2 ] is always equal to or greater than the square of the mean.

For purposes of demonstration we find the moments of the random variable

whose pdf is given in Equation 10. By using Equation 10 in Equations 13 and 14

we find

E[X] = 5 (17a)

V[XI = 5 (17b)

The standard deviation is

a x (17c)

These values concisely summarize the nature of the random variable defined

previously.

c. Joint probabilities--The joint behavior of two or more random variables

is often of interest. In problems of structural reliability analysis, con-

sideration of multiple random variables is essential. We now proceed to outline

the probability structure used to consider the joint behavior of random

variables. As with single random variables, two functions can be used to

describe the probabilistic character of a pair of random variables. These are

the joint pdf and the joint cdf. The joint pdf for a pair of random variables,

X and Y, is denoted pXy(X,y), and is defined in terms of the probabilities it

yields for joint realizations of random variables. Where the symbol n is used

to denote the "and" operation we write

P(x I < X • x2 n Y, < Y 4 Y2 ) = x" dx dy pXy(x,y) (18)

15
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This equation states that the probability that, as the result of a random

experiment, the realization of X occupies the interval (xI, x2 ], and the reali-

zation of Y occupies the interval (Yl, Y21, is the volume under the surface

pXy(x,y) over the two dimensional area defined by (xl, x2 ] and (yl, Y2]. Since

a probability must be equal to or greater than zero, and a probability cannot be

greater than one, we require that a joint pdf satisfy the following requirements.

pXy(x,y) > 0 -- < x,y < G (19a)

dx f dy pXy(X,y) = 1 (1gb)

The probability that the joint realization of X and Y falls within either of two

nonoverlapping areas in the x-y plane is simply the sum of the probabilities

that it falls within each area.

The joint pdf for several random variables is defined in a manner similar

to that for two random variables. Let X1 , X2 , ... Xn , be jointly distributed

random variables, and let their pdf be denoted Pxl X2 ... Xn (X .. Xn);

we can write

P(all < XI 4 a 12, aZl < X2 coa22, -. , an, < Xn 4a n2)

=12 dx 1  
2 2 dx2 ... an 2 dxn P, Xn(XX2,1 ""Xn)

all a2  ctnl n

- < ail a4i2 < (20)

The joint probability that each random variable, Xi , i = 1, ...n, is in the

interval (Qctl ci2jI' i = 1, ... n, is the integral of the joint pdf over the

joint interval (cli'l z), i = 1, ... n. This is a simple extension of the two-

dimensional case. It is required that the joint pdf be nonnegative and have a

unit integral over the infinite n-dimensional space (by analogy with Equation

19).

The joint pdf completely defines the probabilistic character of the random

variables X and Y, and it can be used to obtain the marginal pdf's of X and Y.

The marginal pdf of X is PX (x). The marginal pdf of X is obtained by

16
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integrating out dependence of PXY (x,y) on y. The marginal pdf of Y is found

similarly. We write
as

px(X) = f pXy(Xy) dy -- < x < - (21a)

Py(Y) = f pXy(X,y) dx -m < y < C (21b)

In general the joint pdf of X and Y cannot be obtained from the marginal pdf's.

The joint cdf can be used to characterize the joint probability behavior of

a pair of random variables. The joint cdf of the random variables, X and Y, is

denoted PXY (x,y), and is defined

Pxy(X,y) = f d L dB'Pxy(a',), -- < x,y < (22)

This is the probability that the random variable X has a realization equal to or

lower than x, and Y has a realization equal to or lower than y. Because of the

requirements imposed on a pdf and the relation between a cdf and a pdf, we

require that a cdf satisfy the following requirements.

Pxy(X,y) f - < x,y < - (23a)

Pxy(--, -a) = 0, Pxy(-,-) = 1 (23b)

The joint cdf of several random variables is an extension of Equation 22.

Let X1 , X2 , ... Xn , be jointly distributed random variables, and let their cdf

be denoted PX1X 2 ... Xn (xl , x2 , ... xn). We define the cdf using the equation

P XPX2 ...Xn(X x2' .., xn)

do 1 f, 2 , f.od ... on"°
=~~~~~ Li1 d2 ... dcn (a' 'nd0 Pi~( 12. n)

< xi <- (24)

This is the chance that each random variable, Xi , i = 1, ... n, has a realiza-

tion in the interval (--, xi), i = 1, ... n. The joint cdf is nonnegative, and

assumes the value zero at xi = a i a 1, ... n, and assumes the value one at

xi  c, i 1, ... n. The marginal cdf's of X and Y can be obtained from the

joint cdf of X and Y by evaluating the joint cdf as x + or as y -.

Specifically, we can write

17
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Px(X) - Pxy(X,-) < X < (25a)

Py(y) = Pxy(-, -- < y < - (25b)

The first equation states that the probability that the realization of X is

equal to or less than x and the realization of Y is finite is simply equal to

the probability that the realization of X is equal to or less than x. The

reason for this is that the realization of Y must be finite. The second

equation is explained similarly.

Because of the manner in which the joint cdf is defined, it is possible to

recover the joint pdf from it. By partial differentiation of the joint cdf with

respect to the variables x and y, we obtain
- = 2

Pxy(X.Y) =2- Pxy(x'y), - < x,y <- (26)

d. Joint moments--Given an expression for the joint pdf of the random

variables X and Y, we can obtain the individual moments of X and Y by first

using Equations 21a and 21b to obtain the marginal pdf's of X and Y, and then

using the moment definitions, Equations 13 through 16. In addition, there exist

joint moments between X and Y which summarize, in brief, the probabilistic rela-

tion between the random variables. One joint moment is the correlation between

X and Y; it is defined

E[XY] = dx dy xy pXy(X,y) (27)

This is the average value of the product XY.

Another joint moment between X and Y is the covariance; it is defined

Coy £X,YJ E[( X - lix ) (Y - 11Y)Wcgo
- dx dy (x - v)(y - uy) PXy (x,y) (28)

This is the average value of the product (X - vX) (Y - py) where uX and Py are

the means of X and Y, respectively. This is the lowest order joint movement of

X and Y about their joint mean.

A third joint moment of X and Y is the correlation coefficient. It is

defined

18
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Cov[X,Y] (29)"" P1XY =  -X~

where ax and ay are the standard deviations of X and Y, respectively. This is

simply a normalized form of the covariance. The correlation coefficient is a

number which is always between -1 and 1. When the covariance or correlation

coefficient is positive, this implies that the realizations of X and Y both tend

to be on the same side of their means at the same time. We infer this since the

product, (X - pX) (Y - py), is "on the average" positive, and this implies that

both factors are positive or both are negative. This is called positive corre-

lation. A negative covariance or correlation coefficient implies that X and Y

tend to be on opposite sides of their means at the same time. This is negative

correlation. Finally, when the covariance or correlation coefficient is near

zero, this indicates that the average of the product, (X - "X) (Y - uy), is near

zero. Little or no linear relation between X and Y exists. The random

variables are uncorrelated.

e. Independence--There is another condition, similar to correlation, which

describes the relation between pairs of random variables. This is dependence.

Two random variables are independent if their joint pdf is separable into two

parts, one part dependent on x alone, and the other part dependent on y alone.

That is, if

pXy(X,y) = PX(X) py(y) --0 < x,y < (30)

then the random variables, X and Y, are independent. Separability of the pdf

implies separability of the cdf because the integral of Equation 18 can be

separated. When X and Y are independent we have

Pxy(X,y) = Px(X) Py(y) -- < x,y <- (31)

When a pair of random variables is not independent, then it is dependent.

Generally, random variables are independent when the realizations of one are not

contingent in any way on the realizations of the other. Random variables are

often assumed independent to simplify an analysis. Later, we discuss the

reasons why a practical structural reliability analysis is considerably simpli-

fied when independence assumptions are used. When two random variables are

independent, this implies that they are uncorrelated; but when two random varia-

bles are uncorrelated, this does not necessarily imply that they are independent.

19



Independence between pairs of several jointly distributed random variables

is defined by simple extension of Equations 30 and 31. Let X1 , X2 , ... xn , be

jointly distributed random variables. The random variables are independent if

their joint pdf can be written

PXX 2 X...X (xI, X2, Xn) = PXi(XI) PX2 (X2) ... PXn(Xn)

- < xi < (32)

and their joint cdf can be written

X2...Xn (x1 , x2 , ... , Xn) = Px1(Xi) Px2 (x2) ... PXn(xn)

< xi < = (33)

The concept of joint independence for several random variables is important in

practical reliability analysis.

f. Analysis of reliability at one point--Given the background presented

above, it is now possible to outline the steps in an elementary reliability ana-

lysis. The fundamental question that must be answered to determine the reliabi-

lity of a structure at a single point is: What is the probability that, when

the structure is loaded, the strength at the point will be greater than the load

at the point? If we let X be a random variable denoting load at a point, and Y

be a random variable denoting strength at the point, then we can define another

random variable as

Z = Y - X (34)

and this is simply the random margin between strength and load at the point. If

we can find the probability that the realization of Z is equal to or greater

than zero, then we will know the answer to the question posed above. To find

the probability that the realization of Z is equal to or greater than zero,

first develop an expression for the cdf of Z. Next, evaluate this at z = 0.

Finally, subtract the result from 1. This yields the probability that the

realization of Z is equal to or greater than zero.

The cdf of Z is developed in the following way.

Let Z= Y - X. The cdf of Z is, by definition

PZ (z) P(Z Z) -< z < (35)

20



AFWL-TR-81-111

We can use the definition of Z on the right-hand side, above, to obtain

Pz() = P(Y - X 4 z) = P(Y 4 z + X), -- < z < - (36)

In the final step the inequality is simply rearranged. The probability on the

right-hand side is the integral of PXy (x,y) on the x-y plane, over those com-

binations of values of x and y such that y 4 z + x. Therefore, we can rewrite

Equation 36 using either of the two equivalent expressions

dx f dy PxY(X y) (37a)
PzZ) = M -a < z < (3a

f dy dx py(x y) (37b)
y-z

If, for example, the joint probability distribution of load X at a point, and

strength Y at the same point, is known, then the cdf of the difference between

those two can be obtained using the above integrals.

In many cases X and Y will be assumed independent (as in the case of load

and strength) and Equations 37a and 37b will simplify to

f Px(X) Py(z + x) dx (38a)

Pz(Z) = < z <

1 -if py(y) Px(y - z) dy (38b)

These equations are much simpler to evaluate than Equations 37a and 37b,

since these involve only a single integral. The reliability, R, or probability

of survival at a point, is the probability that Z is equal to or greater than

zero, and in terms of Equations 37a and 37b this is

1 - 5 dx x dy pXy(x~y) (39a)

R =

1 - y fdx P~y(x~y) (39b)
5 y

When X and Y are independent, these equations simplify to

.- Px(X) Py(x) dx (4na)
'. R

py(y) Px(y) dy (4nb)
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A numerical example that uses a specific probability distribution is presented

later.

The simplification introduced by assuming that the load and strength random

variables are independent is made apparent in Equation 38. Beyond this simpli-

fication, though, lies another. Later, when we wish to consider the reliability

of a complex structure, we will often assume that the event that a structure

survives a load at one point (where the point load results from a complex exter-

nal load) is independent of the event that the structure survives a load at

another point. In this way, the overall structural reliability (probability of

structural survival) can be computed as the product of point reliabilities

(probabilities of structural survival at individual points).

We note that the pdf of Z = Y - X can be obtained by differentiating

Equation 37a or 37b with respect to z. We obtain

pXy(x,z + x) dx (41a)
' ~pZ(z) = =< Z <=

Pf pXy(y z,y) dy (41b)

When the random variables, X and Y, are independent, these equations simplify to

f pX(x) py(Z + x) dx (42a)

PZ(z) = -< z <

p_ px(y - z) py(y) dy (42b)

These are convolution integrals and that fact can be used to simplify com-

putations of the pdf of Z.

Another elementary approach to the solution of the fundamental reliability

problem is also available. As before, let X be a random variable denoting load

at a point on a structure, and let Y be a random variable denoting strength at

the same point. In the present case, assume that X and Y can only assume values

equal to or greater than zero; that is, the joint pdf of X and Y is zero when

x < 0 and y < 0. This is a realistic assumption. We can define the ratio of

these two random variables as another random variable W. It is

W =Y/X (43)
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and this is the random factor of safety at the point on the structure. The pro-

bability that the realization of W, resulting from a random experiment, is equal

to or greater than one is the structural reliability at the point. We can eva-

luate this by finding the cdf of W. By definition the cdf of W is

Pw(w) = P(W 4 w) (44)

We use the definition of W to write

Pw(w) = P(Y/X C w) = P(Y 4 wX), 0 ( w <- (45)

The last step is simply a rearrangement of the inequality. This is allowed

since the realizations of X are nonnegative. The probability on the right-hand

side is simply the integral of PXY (x,y) on the x-y plane over those com-

binations of values of x and y for which y c wx. Therefore, we can write two

equivalent expressions for the cdf of W as

J dx dy pXy(x,y) (46a)

Pw(w) Z 0 4 w <-

dy dx pXy(xy) (46b)
o y/w

If the joint pdf of X and Y is known, then the cdf of W can be evaluated. When

X and Y are independent, the integrals simplify to

pX(x) Py(wx) dx (47a)

Pw(w) - 4 w <

1I - f py(y) Px(y/w) dy (47b)
0

These integrals are easier to evaluate than those in Equation 46a and 46b.

The reliability, R, at a point is the chance that the realization of W is

equal to or greater than one. This is

S f dx fx dy pXy(x,y) (48a)
R =0 0l

I : I dy dx pXy(x,y) (48b)
n Y

When X and Y are Independent, these equations simplify to
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1 - f PX(x) Py(x) dx (48c)
R= 0

Py(Y) Px(y) dy (48d)

A numerical example using this expression is presented later.

g. The normal and lognormal distributions--We now discuss some specific

probability distributions, namely the normal and lognormal distributions. These

are important in structural reliability analysis. Let X and Y be random

variables. We say that X and Y are jointly normal if their pdf is

PXy(x,y) = 1

exp [ _ I((x - X ) - 2pxy(x - x)(Y vy ) +(Y - 110) 2)]

- < x,y < - (49)

The parameters of this distribution have the following meanings: ux and Py are

the means of X and Y; aX and ay are the standard deviations of X and Y; and

PXY is the correlation coefficient between X and Y. When this joint pdf is used

in Equation 21a, the marginal pdf of X can be obtained; it is

=Xx 1 exp 2 - PX - < x <O (50)

The pdf of Y is exactly analogous. Note that when pXY equals zero in Equation

49 the joint pdf can be factored into two expressions as in Equation 50. This

shows that when two normal random variables are uncorrelated they are also inde-

pendent. This is not true for all probability distributions.

Figure 3 is a graph of the pdf of a normal random variable which has mean,
2

UX = 0, and variance, aX, = 1. Note that the pdf is symmetrical and has a

finite value for every value of x.

It is possible for a large collection of random variables to be normally

distributed. Let X1 , X2 , ... Xn, be a collection of random variables which is

jointly normally distributed. Their pdf is given by
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.Px1 Xe •• n 
(X1- X2 .x2 • x n )

- (a)nl2 Isl, 12 exp [.-1 ({x} - {})TESJ'l({x} - l) (51a)

-{H} < {X} < {1'

where {x} is a vector of xI values defined

{x} = (xI x2 ... xn)T (51b)

{u and [S] are the mean vector and covarlance matrix, defined

{U} = (Ul U2 --- un)T (51c)

where

i= EEXiJ, i = 1,2, ••• n (5Id)

and

IS] = "S1 S1 2 ... Sln

S21 S22 -. S2n

Snl Sn2 ... Snn

where

ij = Coy EXi , X3], ij = 1,2, ... n

IS1 is the determinant of the matrix, [S]. A superscript, T, refers to the

matrix operation of transposition. A superscript, -1, refers to inversion.

One of the major difficulties in the use of the normal distribution is that

it cannot be integrated, except numerically. We denote the cdf of a standar-

dized normal random variable as §(x), and this function is tabulated in many

references (e.g., Refs. 1 and 2). This is the cdf of a normal random variable

1. Brownlee, K. A., Statistical Theory and Methodology in Science and
Engineering, John Wiley and Sons, Inc., New York, 1960.

2. Abramowitz, M. and Stegun, I. A., eds., Handbook of Mathematical Functions,

National Bureau of Standards, Applied Math Series 55, June, 1964.
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with mean zero and variance 1. The O(x) is related to the error function by the

formula

o(x) =1(1 + erf (x/vr2), - < x <- (52)
2

The error function is a function available on most computers; therefore, in

numerical analyses the cdf of a normal random variable can be easily evaluated.

Through the use of a simple linear transformation, the cdf of a normal random

variable with nonzero mean and nonunit variance can be obtained from O(x). Let

X be a normally distributed random variable with mean, vX, and variance oX2 ; the

cdf of X is

Px(x) = -( ix < - < d (53)

When X and Y are independent normal random variables, their joint cdf can

be expressed using O(x). Let the means and variances of X and Y be 1X and Uy
2 2and CX and ay , respectively. The joint cdf and X and Y is

P , - < x,y < (54)

The joint cdf of correlated normal random variables can be expressed only by

writing the double integral of Equation 22 where pXy(x,y)g is given in Equation

49 and pXy is not zero. In the normal case a numerical approach must be used to

evaluate Pxy(xy) when PXY is nonzero.

Pairs of normally distributed random variables possess the useful future

that their sums and differences are also normally distributed. Let X and Y be2 2
normal random variables with means and variances, uX and Uy, and a X and ay 2

respectively. And let their correlation coefficient be pXY" Then the random

variable

Z = Y- X (55a)

is a normally distributed with mean and variance

E[Z] = = =y - ux (55b)

and
2 2 2

VZI = 2 = "y + ax  -
2 PXYaXOY (55c)
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The random variable, Z, defined above, is very useful in the analysis of

structural reliability at a point. Let us identify the random variable, Y, with

structural material strength at a point, and the random variable, X, with load

at the same point. Then the reliability at that point is the probability that Z

is equal to or geater than zero. When X and Y are normal, Z is normal and the

point reliability, R, can be expressed

R = P(Z o 0) = 1 - P(Z 4 n)

Z 1 - *(-U Z/1'Z) (56)

When the load and strength random variables are independent this expression can

be simplified using Equation 55.

R = 1 __X____ (57)2/# 2/o + 2)

The final step on the right can be made because of the symmetry of the normal

pdf. This equation is used often for reliability analysis.

In reliability analysis it is often desirable to consider the reliability

at a point on a structure in relation to the factor of safety of the classical

design at that point. This can be done in the following way. Let X be a random

variable representing load at a point, and let Y represent strength. Assume

that these are independent. Let these random variables be distributed normally,
2 2

with means and my and variances a, and ay 2 . Assume that the allowable load,

Xo, in the classical analysis is chosen so that a random load has a probability,

Px, of being lower than, x0 ; we can write

Px = X0 " x) (58a)

Assume that the design strength, yo, in the classical analysis is chosen so that

a random strength has a probability, py, of exceeding yo; we can write

P yy = 1 - (y- UY) (58b)

The above two equations can be inverted to obtain x0 and yo.

xo = OX (px) + Ox (5,c)

Yo = Oy'( - py) + my (58d)
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where 0-(.) is the inverse function of the standard normal cdf. The factor of

safety, F.S., is simply the ratio of yo to xo .
I1

F.S. = YO = OY' (I - PY) + Uy (58e)
" Xo aX4'1(Px) + PX

The point reliability for this case is given by Equation 57. More general for-

mulas for accomplishing this comparison are given in Reference 3.

The use of the normal distribution is demonstrated by the following

example. Suppose that a structure is to be subjected to a random environment,

and if failure occurs it is most likely to occur at a single predictable point.

Assume that failure occurs when material yielding occurs. The environment is

random, and the probability distribution of the peak load random variable, X, at

the point of potential failure is normal. The mean and variance of the peak

load are 1.5 x 10I8 Pa and 9.0 x 10 (Pa) 2 , respectively. The strength, Y, of

the component is a random variable, also, with mean and variance 4.0 x 108 Pa

and 16.0 x 1014 (Pa) 2 , respectively. This random variable is also normally

distributed and is independent of X. Further, we assume that the structural

component under consideration was designed deterministically, and its allowable

load is 2.1 x 108 Pa and its design strength is 3.2 x 10 Pa. Then the margin

of safety for the element is 0.5; its factor of safety is 1.5. Find (1) the

probability that the allowable load is surpassed in the test, (2) the probabi-

lity that the actual strength is lower than the design strength, and (3) the

structural reliability.

The probability that the allowable load is surpassed during one random

experiment is the chance that a realization of X is equal to or greater than 2.1

x 108 Pa. Using Equation 53 and Table 1 in Reference 1, we find that this is

P(X > 2.1 x 1n8 ) - 1 - P(X e 2.1 x 10 ) = 1 - 0(2) = 0.02275 (59a)

The probability that the realized yield strength is lower than the design yield

4strength is the chance that a realization of Y is equal to or less than 3.2 x

108 Pa. Using Equation 53 and Table 1 in Reference 1, we find that this is

3. Merchant, fl. H., et al., Study of Ground Handling Equipment nesign Factors,
AFWL-TR-77-150, Air Force Weapons Laboratory, Kirtland AFB, NM, February
1978.
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8
P(Y < 3.2 x 10) 0 *(-2) - 0.02275 (59b)

Let Z= Y- X. The moments of Z are

11Z 2.5x 10 Pa (59c)

2 14. 2
z = 25.0 x 10 (Pa) (59d)

and Z is normally distributed. Failure occurs when Z is less than zero, so the

reliability is the probability that Z is equal to or greater than zero. This is

R = P(Z > 0) = 1 - P(Z < ) = 1 - 0(-5.0) = 1 - (0.30 x in6) (60)

This important quantity is the chance of structural survival during one random

experiment.

In describing this numerical example, it was stated that failure is assumed

to occur with yielding. Since it is relatively easy to analyze linear struc-

tural response, it would not be difficult to determine what responses are caused

by specific loads on a structure. For the most complicated structures, finite

element analyses could be used. It might alternately have been stated that

failure occurs at some stress beyond the yield level. In this case, the analyst

could determine the structural reliability as it was done above, but the nonli-

near responses caused by structural inputs must be determined. This implies

that a nonlinear structural analysis must be performed, and this adds a degree

of complexity to the problem.

Another probability distribution important in structural reliability analy-

sis is the lognormal distribution. A random variable is lognormally distributed

when its logarithm is normally distributed. Let X be a lognormally distributed

random variable and let

U = In X (61)

Then U Is a normally distributed random variable. If X has mean OX and variance

YX 2 then the moments of the random variable, U, are

EEj= 1U -Ln (ux//Vx2 + 1) (62a)

V[U] aU- 2 in (Vx2 + i) (62b)

Where VX is the coefficient of variation of the random variable X, and is

defined
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V= (62c)

The cdf of the random variable X is defined as follows.

Px(X) = P(X e x) = P(eU c x) = P(U 4 iLnx)

(nx ) , x 0 0 (63)

This shows that the cdf of a lognormal random variable can be written in terms

of the cdf of a standard normal random variable, 0(.).

The pdf of a lognormally distributed random variable can be obtained by

differentiating Equation 63 with respect to x. The graph of a lognormal cdf is

shown in Figure 4, for a random variable with mean, pX = 10, and variance, Ox2

= 1. Note that the pdf is nonzero only on the right half of the real line.

The distribution is skewed toward the right.

The products and quotients of a pair of lognormally distributed random

variables possess the useful feature that they are also lognormally distributed.

The reason for this is that the logarithm of a product is the sum of the

logarithms of the multiplicands, and the logarithm of a quotient is the dif-

ference between the logarithms of the factors. Further, the logarithm of each

factor has a normal distribution, and sums and differences of normal random

variables are also normally distributed.

To see how this can be useful in reliability computations, consider the

following. Let Y be a lognormally distributed random variable denoting strength

at a point on a structure, and let X be a lognormally distributed random

variable denoting peak load at the same point. Assume that these are indepen-

dent. Let W be defined

W - Y/X (64)

The structural reliability is the probability that a realization of W is equal

to or greater than 1. Let us also define

U, = in X (65a)

U2 = Ln Y (65b)

The moments of U1 and U2 are
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" U, in (,xI/Vx 2 + 1) (66a)

11 U2 = In + 1) (66b)

U i n V + 1 (66c)

21 Zt(V 2 + 1)

1UJ2  I An (Vy2 + i) (66d)

The reliability is computed as follows

R = P(W> 1) = 1- P(W < 1) = 1- P(Y/X < 1)

= 1- P(xnY -InX < Inl) = 1- P(U2 - U1 < 0)

U1. - "U2 (67)

The reliability of a structure whose load and strength are lognormally distri-

buted can be expressed in terms of the cdf of a standard normal random variable,

To demonstrate the use of this approach, repeat the numerical example

I salved previously. In the present case, though, assume that the load and

strength are lognormally distributed. The lognormally distributed random

variable, X, which represents peak load at a point on the structure, has mean

~~1.5 x 10) Pa, and variance 9.0 x 10I (Pa) 2 . The lognormally distributed random

+ variable, Y, which represents the strength of the structure, has mean 4.0 x 1(0
8

2 2)

Pa, and variance 16.0 x 10k' (Pa) . In the deterministic structural design, the
allowable load was 2.1 x 108 Pa, and the design was 3.2 x Pa. These yield a

safety margin of 0.5, or a factor of safety of 1.5. We wish to find (1) the

probability that the actual load is surpassed in the test, (2) the probability

that the actual strength i lower than the design strength, and (3) the struc-

tural reliability.

The probability that the allowable load is surpassed during loading is the
chance that a realization of X is equal to or greater than 2.1 x 108 Pa. Using

Equations 62 aand 60nd Table 1 in Reference 1, this can be evaluated,

R(X 2.1 x 10 8) = 1 - (1.77) = 0.0384 (68)
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The probability that the realized yield stress is lower than the design yield

stress is the chance that realization of Y is equal to or less than 3.2 x 108

Pa. Using Equations 62 and 63 and Table 1 in Reference 1, this can be

evaluated.

P(Y 3.2 x 108) 0(-2.51) = 0.00604 (69)

Finally, using the variables U1 and U2 , defined in Equations 65 we can compute

their moments. They are

PuU = 18.81 (70a)

= 19.80 (70b)

2OU = 0.0392 (70c)

2O4  = 0.00995 (70d)

Equation 67 can be used to evaluate the structural reliability at a point. It

is

R = 1 - (0.40 x 10-5) (71)

This is an estimate of the chance of structural survival during the random

experiment.

The results of the numerical examples ending with Equations 60 and 71 pro-

vide a comparison between structural reliability estimates obtained using the

normal assumption for the load and strength random variables, and the lognormal

assumption for the load and strength random variables. If we recall that the

probability of failure of a system is given by 1 minus the reliability, it is

clear that the lognormal assumption provides a more conservative estimate of

failure probability than the normal assumption. If the analyst wishes to be

conservative, then, based on this example, he will choose the lognormal assump-

tion over the normal assumption regardless of which assumption more closely

*approximates the true state of nature. It happens in most cases of practical

interest that it is difficult to show that one distribution is better suited for

use in a particular problem than another, especially when the distributions are

similarly shaped. In spite of this, many analysts favor the lognormal distribu-

tion over the normal because the lognormal distribution is nonzero only over the

nonnegative half of the real number line, whereas the normal distribution is
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nonzero over the entire real number line. In practice, quantities such as peak

load and failure strength must be positive; therefore, the lognormal distribu-

tion is thought to be a more reasonable model for their probabilistic behavior.

This reasoning leads to a conclusion of secondary importance, though; irt fact,

the model which a probability distribution provides for a natural phenomenon

should be well fitted everywhere. Moreover, there is no guarantee that the

right-hand tail of a lognormal distribution will describe a practical phenomenon

better than the right-hand tall of a normal distribution. We conclude from this

that use of the normal distribution in practical problems is quite acceptable.

Another reason why the normal distribution may be used in practical

problems is that the results of a reliability analysis are made conservative by

other assumptions in the analysis. For example, the often used assumption that

failure occurs when the yield stress is surpassed tends to make reliability

analyses conservative if true failure occurs when the response is beyond the

yield point. The assumption of independence, to be discussed later, also makes

analyses conservative.

Note that, whether the normal or lognormal assumption is used, the esti-

mated probability of failure is relatively small. This result takes place even

though the factor of safety, design strength and allowable load are quite

modest. It should be noted that the results are strongly dependent on the ran-

dom variable moments. In general, as the variances of the load and strength

increase, the reliability tends to diminish.

A summary of the information and formulas presented above is given in the

last section in this chapter.

2. RANDOM PROCESS CONCEPTS

In the performance of a practical reliability analysis it is possible that

the analyst will be provided with the type of information used in the previous

section. That is, the analyst may be Provided with the probabilistic character

of the structural material and the peak load to be applied on a structure during

a random experiment. In fact, some materials have been probabilistically

characterized and their parameters tabulated; these will be discussed later. It

is more likely, however, that it will be necessary to derive the probability

distribution of peak loading from some other information which is available from

field measurements.
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It is most likely that the loads which will be applied to a structure

during its design life will be either dynamic, or multiple repetitions of a sta-

tic load. This report assumes that the strength of each structure under con-

sideration does not deteriorate. Therefore, we wish to find the probability

distribution of the highest peak load in a random dynamic input, or the largest

load in a sequence of static inputs.

This section discusses the procedure which can be used to obtain the peak

load probability distribution using the parameters of a random input.

Particularly, consider the case where the input is a random process and focus

most attention on the stationary random process.

Prior to determining the peak load probability distribution, some elemen-

tary concepts in random processes are briefly introduced.

a. Random processes--Formally, a random process is defined as a parame-

tered family of random variables. In other words, a random process can be

thought of as a collection of random variables unfolding in some sequence, such

as a time sequence. Random processes are used to describe measures of interest

in random structural dynamics problems. For example, the pressure at a point on

the outer surface of a re-entry vehicle passing through the atmosphere is a ran-

dom process. And, for example, the stress at a point on a bomb rack attaching

a bomb to an airplane flying through the atmosphere is a random process.

Random processes can be divided into those which vary rapidly with time and

those which do not. A random process varies rapidly with time when some of its

characteristics, such as total instantaneous average power, or instantaneous

average power in a limited band of frequencies, show considerable variation on a

time scale which is on the order of, or shorter than, the fundamental period of

the mechanical system under consideration. Therefore, the rapidity of variation

of a random process depends on the system which the random process is used to

excite. Random processes which vary rapidly with time require special treatment

which will be discussed at the end of this section. The other class of random

processes is known as stationary or quasi-stationary random processes. These

random processes have a steady state character in a random sense.

Random processes are completely specified by collections of joint pdf's

which define the probabilistic relations among every collection of random
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variables composing the random process. When we assume that the random process

under consideration is stationary and normally distributed, though, it is not

necessary to directly consider all these pdf's and some meaningful results can

be obtained using relatively simple calculations. A normal random process is

one whose joint pdf's are all normal in form (see Ref. 6). A normal random pro-

cess is characterized by its mean, its variance, and the correlation between

each pair of random variables in the random process. (Most input and response

random processes are assumed normal, in practice.) For a stationary normal ran-

dom process, many quantities of interest can be determined using the mean of the

random process, which we assume constant in time, and a function known as the

spectral density.

The spectral density of a stationary random process is a function which

defines the mean square power of a random process in the frequency domain. This

relates directly to the behavior of the random process in the time domain, and

the peak values that a random process executes can be approximately charac-

terized using the spectral density.

We now define spectral density and show how it is computed. Let X(t) be a

stationary normal random process with zero mean. (If the mean of a random pro-

cess is nonzero, then the mean must be subtracted out and considered separately

from the oscillatory portion of the random process.) Let G(f) represent the

spectral density of the random process. From the random process, X(t), we

generate another random process which is its finite Fourier transform.

X(f,T) = T X(t)e-i21ftdt, f ; o (72)

From this random process we generate another which is the squared modulus of

X(f,T); it is

IX(f,T)12 = X(f,T) . X*(f,T), f ; o, T > 0 (73)

where a star superscript refers to the operation of complex conjugation.

Finally, take the mean of this random process and multiply by 2/T. The limit of

this quantity as T approaches infinity is the spectral density of X(t).

Gx(f )  lim 2 ErIX(f,T) 12], f > 0 (74)
T - T
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This spectral density of X(t) defines the density of mean square power at the

frequency, f.

This formula is commonly used to estimate the spectral density. Yet two

things about the formula create difficulties in this regard. First, we will

never have a record with infinite length; second, we cannot even estimate the

expected value unless several records are available to average. The following

procedure is used.

A signal which comes from a random source is called a realization of the

random process at the source. When one realization, x(t), is to be used to

estimate the spectral density, operate as follows. Divide the signal, x(t),

into N parts, each of which is denoted xj(t), j = 1, ... N. Then use each part,

xj(t), in Equations 72 and 73 to obtain the estimate of Equation 74; this we

denote Gx.(f). Finally, we average the Gx'(f) over all j = 1, ... N, at each
frequency to obtain our estimate, G (f). The fact that T is finite leads to

an estimate of Gx(f) rather than an exact computation of the true underlying

value. The fact that only one signal is available is handled by dividing

the available signal into parts, as shown above. It should be noted that

the single signal, x(t), used to estimate the spectral density must be

representative of all others in the random process. This quality in a random

process is called ergodicity.

We note that the area under the spectral density curve is the variance of

the random process, X(t).

V[X(t)] = aX= f Gx(f) df (75)
0

For a stationary random process this quantity is a constant. The positive

square root of the random process variance is its standard deviation.

The average behavior of a random process in the time domain can be charac-

terized in terms of the random process spectral density. When the spectral den-

sity has values in a relatively small frequency range which are larger than the

other spectral density values at other frequencies, then the power in the random

process tends to be concentrated in the small frequency range. For example, if
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the spectral density of a random process appears as shown in Figure 5a, then

the realizations of the random process will appear as shown in Figure 5b. That

is, when the spectral density of a random process shows that the mean square

power is concentrated in one frequency range near fn, then the random process

realizations tend to look like harmonic signals with frequency, fn, and random

amplitude. When the spectral density shows concentrations of power at two fre-

quencies, then the realizations of the random process tend to look like the

superposition of two signals, such as that shown in Figure 5b, at the two fre-

quencies of interest.

At the extreme, when the spectral density of a stationary random process is

nearly constant, the realizations of the random process tend to look like

signals composed of many components at many frequencies. For example, if the

spectral density of a stationary random process is given by the graph in Figure

6a, then the realizations of the random process may resemble the signal shown in

Figure 6b.

b. Distribution of the largest peak in a stationary random process--To

date, the exact probability distribution of the largest peak value in a random

signal of interest in mechanical analysis has not been obtained. However,

approximate probability distributions of the largest peak value in a stationary

random process can be obtained in a number of ways. Three of these are

described in the following paragraphs.

It can be shown that, when a normal random process Is sampled a large

number of times, the largest value in the sample is approximately governed by a

Type I extreme value distribution. The parameters of the extreme value distri-

bution depend on the time duration over which the random process is sampled, and

the spectral density of the sampled random process.

In the following, consider a mean zero, normal random process, X(t), with
2spectral density, Gx(f), and variance, aX . The modifications that are required

in the following formulas in the cases where the mean of X(t) is not zero are

discussed later. Let Z be the largest, observed, normalized value in X(t), when

the random process is observed during the time (O,T). Z is given by

Z = max X(t) (76)
(0,T) ax
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Figure 5a. Spectral density of Figure 5b. Realization of a narrow-
a narrowband random band random process.
process.

G1(t) x~t

FREQUENCY T IME

Figure 6a. Spectral density of Figure 6b. Realization of a wideband
a wideband random random process.
process.
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The distribution of Z is approximately a Type I extreme value distribution; this

is
Pz(Z) = exp -e" (z-u)], -0 < z < O (77)

where u is known as the characteristic largest value of Z, and a is the extremal

intensity function. These will be defined shortly in terms of the parameters of

X(t).

The mean value and variance of Z are given by

UZ 2u + 0.5772 (78a)

OZ  (78b)
6et

These are obtained when the derivative of Equation 77 is used in Equations 13

and 14.

The parameter u depends on the duration of the stationary random process

input during which the maximum will occur, and on the random process spectral

density. We define the expected number of times that a stationary random

process with zero mean will cross the value zero with positive slope per unit

time. This is (Ref. 4)

d1]/2f[ N+GXO) d

E[N+(O)l Gx(f) df (79)

Let T be the time duration during which the maximum can occur. Then the nor-

malized characteristic largest value is

u = [2 & (T.EEN+(O))]1/2 (80)

Since we have assumed that the underlying random process, X(t), is normal, we

can express the extremal intensity function, a, in terms of u as (Ref. 5).

a Z u + u" - 2u 3 + lou (81)

4. Rice, S. 0., "Mathematical Analysis of Random Noise," Bell System Technical
Journal, V. 23, 24, Reprinted in: Selected Papers on Noise and Stochastic
Processes, Ed. Wax, Nelson, Dover Publications, Inc., New York, 1954.

5. Gumbel, E. J., Statistics of Extremes, Columbia University Press, New York,
9lg.,
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After computing EEN+(O)] from Equation 79, u can be computed from Equation 80,

and then a can be computed from Equation 81. The u and a can then be used in

Equation 78 to find the mean and variance of the largest value in the random

process, and they can be used in the cdf of Z, Equation 77.

When the mean value of the load random process, X(t), is not zero then the

cdf of the normalized highest peak in the load, Z, must be modified to reflect

this fact. Let the mean of the load random process be vX. Then we are

interested in the probability that the peak load is less than z units beyond the

normalized mean, pX/aX. This is

P Z e z - = exp e-C( z- (u + 1XIx), -< z < - (82)

Note that when pX is zero, this expression is identical to Equation 77. The

mean value of the normalized peak must be modified, too. This becomes

UZ + 
_ (83)

The variance of the highest peak is not affected by the shift in mean.

Now consider a practical example. Suppose that an element is loaded in

such a way that the mean load on the element is vX = 7.0 x 107 Pa, and the

spectral density of the load (excluding the effects of the mean) is given by the

graph in Figure 7. The load is applied for a duration of 60 seconds. Let Z be

the random variable representing the greatest load on the element during the 60

seconds when the load is applied. Find (1) the parameters of the probability

distribution governing the peak load, Z, (2) the mean and variance of Z, and (3)

write the cdf of Z. The variance of the underlying load random process, X(t),

is

2 do14. 2(4
ax = f Gx(f) df = 1.96 x 10i (Pa)' (84)

0

The expected zero crossing rate of the random process is

E[N+(O)] [ (1.96 x 1014)-l f f2 Gx(f) df]' (85)
0

= 964 Hz
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Figure 7. Pressure spectral density for example problem.

The normalized characteristic largest value is

u = [2 .n (T.E[N+(O)J)]] 1 /2 = 4.69 (86)

The extremal intensity function is

u = U + U"1 - 2u- 3 + lnu -s = 4.89 (87)

The parameters u and a can be used to find the mean and variance of Z. These

are

Jz = u + 0.5772 = 4.81 (88)

2= 0.069

The above computations were performed ignoring the fact that the present

random process has a nonzero mean. Therefore, the mean value of Z, uz, computed

above, is simply the average of the highest peak in the random process above the

underlying mean, pX, which in the present case is 7.0 x In Pa. From Equation

83, the true mean of the normalized peak is given by

UZ + = 9.81 (90)
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The nonnormalized mean value of the highest peak load can be obtained by simply

multiplying the expression in Equation 83 by oX; this yields

Mp 2 "rx + UX (gla)

The nonnormalized variance of the highest peak load is obtained by
2multiplying the normalized variance by aX

OP 2 a x 2 z  (91b)

In the present numerical example these are

1p = 13.7 x 10 Pa (92a)
2 113 2

up = 1.35 x 10 (Pa) 2  (92b)

Finally, the cdf of the normalized highest peak load is the probability

that a realization of Z exceeds the normalized underlying mean, PX/oX by an

amount equal to or less than z.

In the present numerical example this is

-(z Z x exp [- e.89(z - 9.69)]

-a < Z <- (93)

This cdf is plotted in Figure 8.

The cdf of the actual peak can be obtained using Equation 76. If we define

Y as the actual highest peak in the random process we have

y . max X(t) (94)
(0,T)

The cdf of Y is

PY(y) = P(V y) = P (ax Z y) = P(z ' Y/OX)

= exp f-e-Ct((Ylax) -(U + 3JX/OX))]

40 < y <- (95)

where Equation 82 has been used. For the present example this cdf takes the

specific form

PY(y) = exp [-e "4.89((y/14 x I07 ) - 9.69)]
< y <G (96)
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Figure 8. CDF's of the normalized highest peak load; extreme
value Type I, normal, lognormal distributions.

Using this expression, the probability that the largest peak in the input, X(t),

is lower than 15.0 x 107 Pa is approximately 0.993. This concludes the numeri-

cal example.

Note one important practical qualification on Equation 79, at this point.

Equation 79 defines the average crossing rate of a zero mean, normal random pro-

cess through the abscissa with positive slope. This quantity tells us about the

frequency content of the random process, X(t), and indicates roughly how often

the random process has an opportunity to assume a peak value (as opposed to a

trough). When the probability distribution of the largest positive value

assumed by a random process (as defined by Equation 76) is of interest, then the

formulas presented above should be used. However, there is another important

practical case. In some situations, it is necessary to find the probability

distribution of the largest value in the random process, which is the absolute

value of the random process considered above (IX(t)f), particularly when failure
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might be caused by either a positive or negative load. For example, when the

load is a stress and the input random process, X(t), has zero mean, and tension

or compression can cause structural failure, then we are interested in the peaks

of IX(t)I. In this case, define the peak normalized load as

Z . max IX(t) (97)

(o,T) 0X

In this case,

E[N(O)] = 2 - E[N+(O)] (98)

which is the expected number of zero crossing of the random process, X(t), per

unit time, should be used in Equation PA in place of E[N+(O)]. The only time it

makes sense to use this approximation is when the mean of the underlying random

process is zero; in this case, positive peaks and negative troughs are equally

likely to cause failure. On the other hand, when X(t) has a nonzero mean, it is

most likely that failure causing loads will occur when the input load is

increased beyond the mean. Therefore, when X(t) has a nonzero mean, the

crossing rate of Equation 79 should be used.

Once the probability distribution of peak load is known, it can be used

along with the probability distribution of structural material strength in

Equations 39 and 48 to find the structural reliability at a point. When the

normal or lognormal probability distribution is used to charactrize structural

material strength, the computation of Equations 39 and 48 must be done numeri-

cally. To avoid this necessity for numerical computations, some approximations

can be made.

One possible approximation is simply to assume that the largest peak value

probability distribution for X(t) is a normal distribution. If we define Z, as

in Equation 76, to be the peak normalized value of the random process, X(t),

above the normalized mean, realized in the time interval (O,T), then the cdf of

Z can be written

P Z 4 z - = l ( 1) ) -- < z <- (99)

If the true largest peak value in the random process is defined using Equation

94, as before, then the cdf of Y is
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P(V 4 Y) ((Y/Gx) - (PZ + IX/OYX)<) (100)

This is the normal cdf approximation to Equation 95. When the probability

distribution of structural material strength is normal, then the reliability of

a structure at a point can be determined using Equation 56.

For comparison, we repeat the numerical example presented above. An ele-

ment is loaded so that its mean stress is ux = 7.0 x 107 Pa, and the spectral

density of the oscillatory portion of the load is given in Figure 7. The load

duration is 60 s; and Z is the random variable representing the greatest load on

the element during the 60 s. (1) Find the mean and variance of the load on the

structure, and (2) write an expression for the cdf of the peak load, Z.

By the assumption in the above paragraph, the mean and variance are the

same in this case as in the previous case. These are
aX=

lZ + 7 9.81 (lOla)

aZ = 0.069 (b11b)

The cdf of the normalized peak load is obtained by using these numbers in

Equation 99.

PZ)z(-z 9.81 < - < (102)

This cdf is plotted in Figure 8 for comparison to the previous results. The

probability that the actual largest peak in the input, Y, is lower than 15.0 x

V) Pa can be computed using Equation 100. It is approximately 0.9997.

Apparently, the normal cdf approaches one more rapidly than the Type I extreme

value cdf. This indicates that the results due to the normal assumption are

less conservative than those connected with the extreme value distribution.

Another approximation for the distribution of the largest value in a normal

random process is available. This is the lognormal approximation. Merchant, et

al. (Ref. 3) have established a lognormal approximation for normal extremes

which matches the Type I extreme value distribution at the fiftieth percentile

and the 99.9 percentile points on the cdf's. This type of approximation is

possible since the two parameters in the lognormal distribution can be chosen to
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force the type of fit described above. The approximation is executed as

follows. First, define Z to be the normalized peak value realized by the normal

random process, X(t), in (0,T). Assume that Z is lognormally distributed.

Next, let U = th Z be the normal random variable transformation of Z. (See

Equations 61 through 63.) Compute the characteristic largest value of the

underlying random process using Equations 79 and 80. The mean of the random

variable U is given by

OU = Z [ D'1 (exp E(1 - O(u)) (in 0.5)])3 (103)

Where 0(.) is the cdf of a standard normal random variable and 0-(.) is its

inverse. The standard deviation of the random variable, U, is given by

OU = n.00199u - 0.0633 + 0.6634u-1 - 0.2648u-2  (104)

1 e, u e 16

These formulas come from Reference 3.

The probability that the normalized largest value exceeds the underlying

normalized mean, pX/aX, by an amount less than z is

P z - = , _ LO) , z < ((n5)

When the true largest peak value in X(t), realized in the interval (0,T), is

given by Y, as defined in Equation 94, then the cdf of Y can be written

P(Y 4 Y>) X 4 et(k)-(Xa) U) y < CM (106)

These formulas establish a lognormal approximation to the probability distribu-

tion for the extreme values of a normal random process. When the probability

distribution of structural material strength is lognormal, then the reliability

of a structure at a point can be obtained using Equation 67.

For comparison we present the numerical example given twice, above. An

element is loaded so that its mean stress is uX = 7.0 x 107 Pa, and the spectral

density of the oscillatory portion of the load is given in Figure 7. The load

duration is 60 s, and Z is the random peak load on the element. Then (1) find

the parameters of the peak load used in the lognormal computations, and (2)

write the cdf of normalized peak load.
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The parameters of U = in Z can be found by using u = 4.69 from Equation 86

in Equation 103. We obtain

U = 1.56 (107a)

Equation 104 can be used to show that

| u = 0.075 (107b)

In terms of these constants, the cdf of the normalized peak load is

PZ 4 z- _ 4 !Xe~ )-15 5 < z <=
ax 0.075

This cdf is plotted in Figure 8 for comparison to previous results. The proba-

bility that the actual largest peak in the input, Y, is lower than 15.0 x 107 Pa

can be computed using Equation 106. It is approximately 0.9918. This result

agrees quite well with the result obtained using the Type I extreme value

distribution.

A summary of the material presented above is given in the final section of

this chapter.

c. Distribution of the largest value in a sequence of random variables--

The introduction to this section mentioned that applied structural loads might

be either dynamic or static. Up to this point we have treated the dynamic case

The case where static loads from one random source are applied to a structure n

times can be treated using the same equations. Let Xi , i = 1, ... n, be a

collection of random variables representing random loads. Let the Xi be nor-

mally distributed with mean value ix and variance OX2 . Let a static load from

each random source, Xi , be applied to a structure. Define the normalized peak

random load as

max Xi - 0 XZ = (1_8)

i aX

The random variable; Z, is approximately governed by the cdf in Equation 77.

That is, Z has, approximately, an extreme value Type I distribution. The

characteristic largest value of Z is
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o1

Where *_ (.) is the inverse function of the standard normal cdf. The parame-

ters, a, pZ and aZ2 , can be evaluated using Equations 78 and 81. The actual

value of the greatest load is governed by Equation 95. This distribution can be

approximated by the normal (Eq. 100) and the lognormal (Eq. 106).

d. Peak distribution in a nonstationary random process--The results pre-

sented up to this point refer specifically to stationary normal random pro-

cesses. It was mentioned at the beginning of this section that some techniques

are available for finding the probability distribution of the largest peak load

in a nonstationary random process. Two of these techniques will be discussed

briefly.

All of the random loads which occur in nature are nonstationary, in a

strict sense. This is true since no real load is in a steady state from the

infinite past till the infinite future. However, we treat loads as though they

were stationary when they assume a steady state character over a sufficiently

long time duration. Exactly what duration is sufficiently long is left to the

judgment of the analyst. For the present application, it is usually safe to

assume that an input is stationary when its steady state duration is 100 times

as great as the fundamental period of the structure excited by the input.

Under most circumstances it is conservative to assume that a random process

structural load is stationary, when in fact it is not, if the spectral density

of the structural load reflects the most severe portion of the load. In view of

this, nonstationary random loads are often treated using the procedures outlined

above. When this is done, two special conditions must be met. First, the

spectral density of the load random process must be computed using the most

energetic portion of the random process realization recorded. Second, the dura-

tion of the stationary load random process, used in computations, must be chosen

to be longer than the severe portion of the measured input. This approach is

often taken in the analysis of structural response to earthquakes, for example.

The second approach to treating nonstationary random load processes can be

implemented only when several load records from a nonstationary random source

are available. Assume that N records, denoted xj(t), j = 1, ... N, of a dynamic

load are available, and are to be used to characterize the probabilistic nature

of the highest peak in the random process which produced the xj(t). On each

record we find the peak value, and we denote this X,, j = 1, ... N. By

definition
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= n xj(t), j = 1, ... , N (110)xj t

If we are interested in characterizing the peak values in the absolute value of

the source, then the quantity, Ixj(t)I, should appear on the right hand side of

Equation 110, in place of xj(t). The average of the highest peak in the

underlying random load process can be estimated using the formula
N

_ x_ (111)

j=1

and the variance of the highest peak in the underlying random load process can

be estimated using the formula

2 1 N
ax T (Xj -X) 2  (112)

j=1

At least ten records should be used in performing these estimates, otherwise

serious inaccuracies can occur. The probabilistic behavior of the highest peak

can be determined by assuming that the highest peak value obeys an extreme value

Type I distribution, or a normal distribution or a lognormal distribution. The

moments estimated in Equations 111 and 112 must be used to find the parameters

that are used in the cdf of whichever model is chosen.

3. RELIABILITY CONCEPTS

Previous sections of this chapter discussed fundamental aspects of probabi-

lity theory and random process theory which relate to solution of the elementary

reliability problem at a point. It has been shown that, when the probability

distributions of structural material strength at a point and load at the same

point are known, then Equations 39 and 48 can be used to compute the structural

reliability at that point. When a structure is to be expoed to a field

environment which can cause that structure to fail at one point, then the

approaches developed in the previous sections are sufficient to compute the

structural reliability. On the other hand, when the field loads are sufficient

to create the potential for failure at two or more points, then the approaches

developed previously are generally not sufficient to compute the probability of

structural survival.
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In view of this, two questions must be answered. First, how many points

must be considered in a given structural reliability analysis? Second, how is

structural reliability computed when a potential for failure exists at many

points? In the following, these questions are answered in sequence.

a. Structural locations to be considered in reliability analysis--When a

structure is loaded mechanically, a material failure can occur in any of the

senses discussed in paragraph I-1. This possibility exists because the probabi-

lity of failure is not zero when an element is loaded. This fact can be seen

from the reliability formulas and the numerical examples presented in the pre-

vious sections. The probability of failure is usually extremely small at all

but a very few points, however. There is a method which can be used to deter-

mine which points should be included in a reliability analysis. Before

outlining this method, though, an important practical point should be made.

Within a particular simple structural component it is not usually necessary

to consider the possibility of failure at more than one point, unless the random

material variation is rapid, in a spatial sense, on the component. We

demonstrate this point with an example. Consider a simply supported beam in

Figure 9. The beam is loaded at its center with the deterministic load, F.

F

Figure 9. Simple beam with concentrated
load applied at center.

The section depth is 2c and the cross-section moment of inertia is I. The outer

fiber stress under the load is

If we denote the material failure strength random variable at the outer fiber at

the beam center as Y, then the probability of failure is
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P(Y Y() M Fc (114)

At any other point on the beam, the outer fiber stress is

a(x) =(Fc/21)x , 0 4 x 4 £12 (115)

j (Fc/21)(X - x), Z/2 e x 9.

where x is a coordinate starting at the left end of the beam. If the material

failure strength random variabie is the same at all other points as it is at the

center, then the probability of failure at point x is

P(Y 4 o(x)) = Py(a(x)), 0 < x ( x (116)

But since a(x) < a(z/2) except when x = X/2, the probability of failure is lower

when x * E/2. Therefore, in this case it is reasonable to consider the possibi-

lity of failure at only one point in a simple structural component. Generalize

the result to state that whenever the failure strength is the same at all points

on a simple component, it is necessary to consider the possibility of failure

only at the location most severely stressed.

We note, further, that it is reasonable to assume that any simple component

made from material which comes from one source, produced at one time, may be

considered to have a single material failure level. This is only an approxima-

tion since real material is not perfectly homogeneous; however, it should be

reasonably accurate, and it considerably simplifies reliability analyses.

Components fabricated from material obtained from different sources should be

considered to have different failure levels.

A point which was developed in paragraph 11-2, and which was made most

clear in the numerical examples demonstrating the normal distribution, is that

the reliability at a point on a structure is indexed by the quantity

P Y - Ox
q=- (117)

where Py and ux are the mean values and ay and ax are the variances of the

random strength and load at a point on a structure. (Note that the random
2variable, X, and its moments, X and aX , refer to the highest peak load applied

to a structure during its design life.) In fact, when the cdf of a standard
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normal random variable is evaluated at q, the result is the reliability of a

structure at a point. Reference to Table 1 in Reference 1 shows that as q

increases, the reliability at a point increases rapidly. This demonstrates our

contention that q is an index of reliability at a point. Note that q is a

direct measure of structural reliability only in the case where load and

strength are normally distributed, but in all cases q can be used as an index of

reliability.

Table 1 shows the values of reliability which correspond to specific values

of q when the load and strength are normally distributed. When q goes to zero

at a point on a structure, the probability of failure approaches the value 0.5.

Failure at a point is clearly most likely to occur at those points on components

where the reliability index, q, is lowest.

TABLE 1. RELIABILITIES OF STRUCTURES WITH
VARIOUS INDEX VALUES

qR

0 0.5000

1 0.8413

2 0.97724

3 0.99865

4 0.99997

5 0.9999997

R is the reliability of a single component structure with normal
load and strength and reliability index, q.

Under most circumstances when the reliability of a structure is computed,

the result is dominated by the influence of point reliability at points on the

structure where the reliability is lowest. In view of this, in the reliability

analysis of a complex structure it is most important to consider the potential

for failure at those places where the reliability index, q, is lowest. In order

to determine which points must be considered in a reliability analysis, use the

following procedure.

a. Find the point on each component of a structure which is critical for a

loading configuration.

b. At each of these points find the reliability index, q.

c. Note the smallest value of q; this is qo.
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d. Refer to Table 2; enter the table with the approximate number of com-

ponents in the system and the value of qo. Read off a value of ql.

e. All components with reliability indices, q, in the range (qo, qj) must

be considered in a reliability analysis.

TABLE 2. RELIABILITY INDEX INTERVALS

Number of Components

qo 10 ion 1000

1.0 2.95 3.60 4.16

1.2 3.05 3.69 4.23

1.4 3.15 3.78 4.32

1.6 3.27 3.78 4.32

1.8 3.39 3.98 4.49

2.0 3.51 4.08 4.59

2.2 3.64 4.19 4.69

2.4 3.77 4.31 4.80

2.6 3.92 4.43 4.ql

2.8 4.07 4.56 5.02

3.0 4.22 4.70

3.2 4.37 4.83

3.4 4.52 4.99

3.6 4.67

3.8 4.82

4.0 4.98

Values of q, are listed in the table.

For values not covered in this table, and when qo ; 3, use
the following formulas:

q,; 0- 1[ - 0( 1 - (q) /

where Q = 0.10 has been used to derive the values in the
table, above, and

o(X) E + 1 (- e2X2/n)1/2

,.1(p) a . n[1 - (2p - 1)2]
2
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The foregoing approach to determination of how many elements must be

included in a reliability analysis is based on the following reasoning. Let a

structure be composed of n independent elements. Let the reliability of the

least reliable element be Ro, and let the reliability of each remaining element

be equal to or greater than R1 . The reliability index of the least reliable

element is qo = 4-1 (Ro), and the reliability index of each remaining element is

q) 4_1 (RI). The probability of failure of the least reliable element is

Po = 1 - Ro = 1-(qo) (118)

and the probability of failure due to all remaining elements is

Pi ( 1 - R1n-1 = 1 - [(q )]n-i (119)

if we require that

Pi 4 Qpo (120)

and we set Q equal to some small number, then the probability of failure

relating to the n - I more reliable elements is a factor of 0 smaller than the

probability of failure due to the least reliable element. In deriving Table 2

we have set 0 = 0.1, and used the expressions of Equations 118 and 119 in

Equation 120. Then we solved for q, and listed this in the table.

This derivation is limited if the element probabilities of failure are not

independent in a complex structure. However, we believe that the results are

conservative in providing a guideline regarding the number of elements that

should be included in an analysis.

When only the one element with reliability index qo falls in the interval

(qo, qj), then only this element need be considered in a reliability analysis.

From a design viewpoint, a well balanced design will have many elements with

reliability indices in the interval (qo, qj).

b. Three approaches to reliability analysis--Once the collection of ele-

ments to be considered in the reliability analysis is determined, the analysis

can be executed. The probabilistic relations among the loads to be applied to

the structural elements and the strength of the elements is very important in

reliability analysis. With reference to these quantities, a reliability analy-

sis can follow numerous lines, three of which are described here. (These cases

were chosen because they can all be treated using the computer program FSR.)
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(1) One can assume that all structural loads are mutually independent

of all strengths, all loads are mutually independent of one another, and all

strengths are mutually independent of one another. Analyses performed using

this assumption are simple and can be shown to yield conservative results.

(2) One can assume that all loads are mutually independent of all

strengths, all strengths are mutually independent of one another, and all loads

have some finite constant degree of correlation with one another.

(3) One can assume that all loads and strengths are mutually inde-

pendent, but the loads have arbitrary levels of correlation with one another,

and the strengths have arbitrary levels of correlation with one another.

The following paragraphs discuss computation of reliability using each of

the assumptions listed above. The following section describes the input which

must be obtained for use in FSR when an analysis using each assumption is

executed.

As mentioned previously, it is not usually necessary to consider the struc-

tural reliability at two points on a simple structural component, but only at

the point which is most critically loaded. The reason for this is that the

strength at one point on a simple component is a good indicator of the strength

at an adjacent point. Further, it is reasonable to assume that there is no

correlation between the failure strength of separate components. Therefore, as

far as element strength is concerned, it is reasonable to assume independence

between components. The same statement cannot usually be made for loads,

though; the reason for this will be demonstrated in a later paragraph. In spite

of this, mutual independence between pairs of loads in a structural reliability

analysis is often assumed. There are at least two reasons for this. One reason

is that this assumption considerably simplifies a reliability analysis, as will

be shown. A second reason is that the results obtained using this assumption

are conservative. That is, the reliability predicted using this assumption is

lower than the true reliability of a structure.

The reliability of a structure is the joint probability that each of the

points considered in the analysis will survive the load applied to it. This

implies that if failure occurs at one point, then the entire structure fails.

57



AFWL-TR-R1-111

This is known as a weakest link failure assumption, and is conservative for sta-

tically indeterminate structures. This definition of structural reliability is

used throughout this report. Since independence has been assumed between pairs

of structural components, this joint probability can be written as a product of

marginal probabilities.

The reliability analysis can be executed as follows.

a. The mean and variance of load and structural material strength at the

critical point on each structural component are computed.

b. The reliability index, q, at each point is computed and the collection

of points to be included in the reliability analysis is determined, as described

above. Let the points to be considered in the analysis be indexed, j = 1,...N.

c. The reliability at each point is computed using one of the formulas

from paragraph II-1 (Eqs. 39 or 48). Let the reliability at point j be denoted,

Rj, j = 1, •.. N.

d. The overall structural reliability, R, is computed using the formula

N
R T Rj (121)

j=1

The probability of failure of the overall structure is simply the complement of

the structural reliability; this is

pf = 1 - R (122)

The simple multiplication of point reliabilities, used in Equation 121 is made

possible by the assumption of independence among all loads and strengths. Given

the means and variances of loads and structural material strengths at the points

to be considered in the analysis, the FSR program will execute the computations

given above for the particular case where the loads and strengths are normally

* distributed. Details of the input are described in the next section.

Note again that the reliability analysis performed using the total indepen-

dence assumption provides a conservative result; that is, the estimated reliabi-

lity forms a lower bound on the true structural reliability.

i4
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When assumptions are made that the structural loads and strengths are

mutually independent, and the strengths at various structural points are

mutually independent, and the input loads are correlated where every pair of

loads has the same correlation coefficient, the problem of estimating the system

reliability becomes considerably more complicated than the problem solved above.

Specifically, the simple multiplication rule used in Equation 121 is no longer

valid. Rather, a more complicated multidimensional integral of a multidimen-

sional pdf is required. The dimension of the pdf is equal to the number of com-

ponents included in the reliability analysis.

The problem to be solved here can be expressed in the following way. Let

Z j = 1, ... n, be the difference between the structural material strength and

the peak load applied at point j, and n the number of points included in the

analysis. The probability of survival is the reliability of the structure, and

this is the chance that each Zj, j = 1 ... n, is greater than or equal to zero.

This is written

R = P(Z1 > 0, Z2 > n, Zn )

= dzl j dz2 "... dZn PZI , Z2 ... Zn (z1, Z2 , ... , Zn) (123)

0 0 f
In the important case where the pdf is normal, this integral cannot be evaluated

in closed form. Therefore, a numerical approach must be taken to the solution

of this problem. Merchant, et al., have shown in Reference 3 that the integral

expressed above can be evaluated numerically using an approach which converts

the n fold integral into a collection of sequences of univariate integrals,

where each sequence has n integrals. This conversion can be performed when each

pair of load random variables has a correlation coefficient with the same magni-

tude. The technique is implemented in the FSR computer program. This conver-

sion is practically useful since it allows us to analyze systems with hundreds

of elements. Reference to Equation 51 indicates how complicated a direct solu-

tion of Equation 123 would be. When the system correlations are not all equal,

a direct numerical analysis of Equation 123 can only be used to analyze systems

of size up to about n = 4.

The method of analysis used to evaluate Equation 123 depends on the assump-

tion that every pair of load random variables is correlated with the same corre-

lation coefficient. While input loads may be correlated, it is not usually the
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case that the correlation coefficient is invariant from one pair of loads to the

next. Correlation between load random variables arises from many sources and

two of these are discussed in the following, and a method for computing input

load correlation is presented.

First, when a mechanical structure is loaded statically and the loads

assume a given physical configuration, and the magnitudes of the loads vary so

that the ratio between any pair of loads is a constant, then the stresses at all

points in the structure vary in such a way that the ratio between any two

stresses is a constant. If the magnitude of the input loads is a random

variable, then the correlation between each pair of loads is perfect, and the

correlation coefficient between each pair of loads is +1 or -1. Correlation is

positive if both loads are tensile at one time or compressive at one time.

Correlation is negative if one load is tensile while the other is compressive.

When static loads are applied to a structure in a given physical con-

figuration and the load magnitudes are random, and the ratios of pairs of loads

is also random, then the correlation between pairs of loads will not be 1. The

correlation between a pair of loads depends on how nearly the ratio of the

magnitudes of the pair of loads remains constant. If the ratio of magnitudes of

a pair of loads is always nearly constant, then the correlation coefficient

between the loads is near ±1. If the ratio of magnitudes of a pair of loads is

highly variable, then the correlation coefficient between loads is near zero.

The correlation coefficient between a pair of static loads, F, and F2 , can

be estimated as follows when a collection of data measured in the field is

available. Let F1j and Fzj, j - 1, ... n, be the stresses measured at locations

1 and 2, respectively, during n random experiments. The mean values of F, and

4 F2 can be estimated using the formula

n
i = 1,2 (124)

j=1

The variances of F, and F2 are estimated using the formula

OF 2 (F1  - F 1). 2, = 1,2 (125)

n-1
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The estimated standard deviations of the loads F, and F2 are simply the square

roots of the estimated variances. The covariance between the loads F, and F2 is

estimated using the formula

n

K, 2 .L F1 ~ 7F1)(Fa -T) (126)
j=1

Given the above estimates, the correlation coefficient between the loads, F, and

F2 , is estimated

K1 2 (127)
012 = ^ "

F1 GF2

As mentioned in paragraph II-1, this is a number between +1 and -1. It is clear

from Equation 126 that, if F1 and F2 both tend to be on the same side of their

means, then I6121 has a value near 1. When F, and F2 bear no linear relation to

each other, then 12 is near zero.

A second situation where structural loads are correlated with one another

occurs when a structural system is excited by random dynamic loads. When the

input loads are stationary, the correlation between the stresses Fl(t) and

F2 (t), at two points, can be estimated using the general procedure outlined

above. In the present case, though, separate stress records will not be

available for separate applications of static loads. Rather, sample records of

the random processes, Fl(t) and F2 (t), will be available. These sample records

must be digitized using a time interval, At. Let tj = jat, j = 1, ... n.

Identify the stress at time tj, Fi (tj), as Fij, i = 1,2. Then use Equations

124 and 125 to estimate the load stress means and variances, respectively.

Equation 126 is used to estimate the covariance between the stationary random

processes, FI(t) and F2 (t). Finally, Equation 127 is used to estimate the

correlation coefficient between the input random processes. As in the static

case, the correlation coefficient between the input stress random processes,

Fl(t) and F2 (t), is a number between -1 and +1. The implications of the corre-

lation coefficient values are the same as before.

Correlation between structural loads can arise from a third source. Often

in a reliability analysis when a single structural component is loaded in

multiple modes, one assumes that the single component acts as multiple com-

ponents, one for each mode of loading. For example, a component may be loaded
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in two directions; then one can assume that the component acts as two com-

ponents, one for each direction of loading. Or a component may be loaded in

shear and bending, and one can assume that it acts as two components, one to

resist shear and one to resist bending. When a single external load results in

two internal structural member loads which are linear functions of the external

load, then the internal member loads are perfectly correlated (p = ±1). When

the internal member loads are nonlinear functions of the external load, then the

internal load correlation coefficient is not 1.

Note that there are theoretical approaches for computing the correlation

coefficient between pairs of random variables and pairs of random processes when

the forcing input random variables (static case) or forcing input random pro-

cesses (dynamic case) are completely characterized, and when the structural

parameters are known. These approaches are rather involved, mathematically, and

therefore are not discussed in this report. Consult References 6 and 7 for

discussions of these analytical techniques.

As stated previously, the load to be considered in a reliability analysis

is the peak load applied to a structure. Whether multiple static loads are

applied to a structure or a dynamic load is applied to a structure, the load pdf

used in the reliability equation reflects the peak load applied to a structure.

In view of this, the correlation coefficient used in a reliability analysis

(when independence is not assumed) must be the correlation coefficient between

peak loads at two points. In Reference 3, Merchant, et al., have shown how to

obtain the correlation coefficient between pairs of peak loads. The correlation

coefficient, PE' between the largest values assumed by a pair of random

variables, F, and F2 , or random processes, Fl(t) and F2 (t), can be estimated

using the formula
6

PE = PN(G + ou y ) (128a)

where PN Is the correlation coefficient between F, and F2 or F1 (t) and F2 (t).

a, 8 and y. are parameters with values

6. Lin, Y. K., Probabilistic Theory of Structural Dynamics, McGraw-Hill Book
Company, New York, 1967.

7. Newland, D. E., An Introduction to Random Vibrations and Spectral Analysis,
Longman Group Limited, London, 1975.
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0.305 pN + 1.181 (12Rb)

B = 0.906 PN - 0.0476 (128c)
4

- 1.023 PN + 0.8352 (128d)

The quantity, u, is the normalized characteristic largest value of the random

variables or random processes. In the case where multiple static loads are

applied to the structure, u can be obtained using Equation 109. When dynamic

loads are applied, u can be obtained using Equation 80. In the latter case, the

u values may differ for the random processes Fl(t) and F2 (t); in this case the

average should be used. Equation 128 relies on the assumption that the inputs

are normally distributed.

In most practical situations it will happen that the correlation coef-

ficients between different pairs of loads have different values. Loads that are

applied at locations close to one another may tend to be strongly correlated.

Other pairs of loads may be weakly correlated or uncorrelated. For any group of

structural elements, the reliability analysis method under consideration allows

only one value of correlation coefficient to be taken into account. In view of

this, '*he reliability computation must be performed as follows. The structural

elements, being considered in an analysis, must be divided into groups. Each

group should contain, as far as possible, elements with highly correlated loads.

And the loads on one group of elements should have a relatively low correlation

with the loads on every other group of elements. Then the reliability of each

group of-elements should be computed using Equation 123, for example, in the FSR

program. The single value of correlation coefficient between pairs of loads

should be chosen as the average of the correlation coefficient between all pairs

of loads in the group. If there are N groups of components, and the reliability

of the components in the jth group is Rj, then the overall structural reliabi-

lity can be computed from

R =f R (129)
j=1

This formula is possible since the groups of loads have been chosen so that

individual loads in different groups have a low correlation.

The probability of failure of the overall structure is
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pf 1 - R (130)

When the means and variances of the loads and structural material strengths

to be considered in an analysis are known, and when the correlation coefficients

between pairs of loads at analyzed points are known, then the type of analysis

discussed above can be executed using FSR. This program assumes all loads and

strengths to be normally distributed. Details required for preparing input for

use in FSR are given in Section III.

Note again that the most conservative analysis is that in which all loads

and strengths are assumed independent; therefore, the results obtained in

Equation 121 should always provide a lower bound on the results obtained using

Equation 129, for a given system. For this reason, the results obtained by the

analysis ending at Equation 121 may be considered preferable in view of the

additional effort required to obtain the results given above.

The most general case that could possibly be considered in a reliability

analysis is one in which all loads and structural material strengths at the ana-

lyzed points are arbitrarily correlated. While a capacity to perform this type

of analysis may be desirable, it is almost inconceivable that it could be put to

use in the context of the problems considered in this report. The main reason

for this is that structural loads and strengths cannot normally be correlated.

This is easy to see when one considers that, in order for loads and strengths to

be correlated, above average loads would have to be applied either to components

with consistently above average strength or to components with consistently

below average strength. It would be practically impossible to arrange for this.

The reliability analysis considered at present is that in which the struc-

tural peak loads, applied to the components analyzed, have arbitrary correla-

tion, the components have strengths with arbitrary correlation, and the loads

and strengths are uncorrelated. In this case it is required to integrate

Equation 123. Given the requirements on correlation, the integral cannot be

evaluated in closed form when the loads and material strength are normally

distributed. The integral can be evaluated numerically when the loads and

strengths are normally distributed, but due to practical difficulties, discussed

in Reference 3, the number of elements considered in the reliability analysis is

.4 limited to about four. This is a small number of elements, but may be suf-

ficient for some practical analyses.
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The capability to perform the reliability analysis described above adds two

features to the reliability analysis discussed previously. First, it allows the

use of arbitrarily correlated load random variables. Second, it allows correla-

tion between structural material strength random variables. One technique for

the estimation of the correlation coefficient between random loads is discussed

above. The results of this type of estimation or any other can be used to

obtain input for analysis, for example, in the FSR computer program.

However the correlation coefficients between strength random variables are

obtained, it will be found that the correlation coefficients between strengths

of components fabricated from materials obtained from different sources will be

zero. In general, only those correlation coefficients which consider material

strengths at two different points on one component, fabricated from one material

sample, will be nonzero. If the material in the component under consideration

is of a high quality and very uniform, than the correlation coefficient should

be very near 1. Lower quality material samples may be less uniform and the

strength correlation coefficients between different points may be lower. For a

particular material sample the strength correlation coefficient should always be

positive.

As stated previously, generally only one point on a simple component need

be considered in a reliability analysis, and this point is the critically loaded

point. There are some situations, however, where this is not true.

Specifically, in a reliability analysis one should consider multiple points on

any component which has two or more points which are severely loaded and whose

reliability indices, q, are close in value.

One method for finding the correlation coefficient between material
strengths, F, and F2 , at different points on a simple component is to test many

sample components to the point of failure. The results of the tests can be used

to estimate the strength correlation coefficient. Assume that n tests are per-

formed and that failure stresses are recorded at two points during each test.

These are denoted Fj and F2j, j = 1, .. n. The means and variances of the

failure loads, F1 and F2 , and aF
2  and F2 , can be estimated using the Equa-

tions 124 and 125, respectively. The covariance between failure loads, K12 , can
be obtained using Equation 126. Finally, the correlation coefficient between
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failure loads can be estimated using Equation 127. This estimate is obtained

for all correlated pairs of failure strengths, and used in the pdf of Equation

123. The equation is numerically integrated, thereby yielding the structural

reliability. The details of integration of Equation 123 in the case where the

loads and strengths are normally distributed and arbitrarily correlated are

discussed in Reference 3; because of their complicated nature they will not be

discussed here. The type of numerical analysis discussed above is implemented

in the FSR computer program for the normal load and strength case.

Note that the correlation between material strengths at different points on

a structural component can be obtained using a theoretical approach when a model

for probabilistic material strength and the structural geometry are given.

The fact that the reliability analysis discussed above is limited in the

number of elements which can be considered, nay make one of the reliability

analysis approaches discussed previously more desirable. When independence

among all loads and strengths is assumed, then the results of the analysis are

conservative.

4. SUMMARY OF FORMULAS

In paragraphs 1., 2, and 3 of this section, formulas for computing the

reliability of a point on a structure, and for computing the overall reliability

of a structure, were presented. Some special formulas were also given for com-

putation of reliability when the load and strength random variables are normally

distributed or lognormally distributed. An outline for the sequential use of

these formulas is presented in this section.

The first step in a structural reliability analysis is to determine the

moments of the largest loads applied at critical structural locations, and to

determine the moments of the strength at those points. This information can be

obtained from data collection and direct statistical analysis, or from a theore-

tical analysis. In the process of determining load moments we assume a distri-

bution for the largest peak load. The moment computation and load cdf

specification proceed as follows. When a stationary normal random process is

applied to the structure under consideration, the probability distribution of

the largest peak value of the input can be obtained using the formulas of

paragraph 11-2, when the spectral density and mean value of the load are

available at the point to be analyzed. Specifically, Equations 79 and 81 can be
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used to find the parameters of the Type I extreme value distribution which

characterizes the largest peak load. The cdf of this random variable is given

in Equation 95. The mean and variance of the largest peak load can be estimated

using Equation 78. These parameters can be used to characterize a normal

distribution of the largest peak load, if this assumption is chosen rather than

the extreme value Type I distribution. The normal distribution of the largest

peak load is given in Equation 100. Finally, if the lognormal approximation of

the distribution of the largest peak load is desired, then Equations 103 and 104

can be used to find the parameters. The lognormal cdf of the largest peak load

is given in Equation 106.

When the means and variances of the peak loads and material strengths at

critical structural locations are known, the reliability index can be

established at every point on the structure where a failure potential exists

using Equation 117. The lowest valued reliability index is noted and this is

used, along with the number of elements in the structure and Table 2, to deter-

mine the range of the reliability index values for elements which must be

included in the reliability analysis.

At this point, one of the assumptions listed in paragraph II-3-b regarding

load and component independence must be made. For preliminary purposes, it is

probably easiest to assume independence between all load pairs and all pairs of

structural material strengths. When this is done, the reliability at each point

must be found. This can be done by evaluating the reliability integral in

Equation 39 or 40. When the load and strength are assumed normally distributed,

the expression of Equation 57 can be used to compute the structural reliability.

When both the load and strength are assumed lognormally distributed, then the

expression of Equation 67 can be used to estimate the structural reliability.

When the reliability of each component is known, then Equation 121 can be used to

find the overall structural reliability. This estimate is a lower bound on the

true reliability of the structure. If the estimate shows that the reliability

is high enough, then no further computations need be performed. Some of the

reliability computations mentioned above can be performed using the FSR computer

program. Specific inputs for this program are listed in the following section.

When the reliability estimate obtained above is not satisfactorily high,

then a more accurate approximation of the structural reliability can be sought.
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This might be obtained by considering the correlation between loads on the

structure. Equations 124 and 127 can be used to estimate the correlation coef-

ficient between structural load pairs. With this information a reliability

estimate can be obtained through integration of Equation 123. As explained in

the text preceding Equation 129, groups of elements with highly correlated loads

must be established. The reliability of these groups can be evaluated using a

special technique from Reference 3, in the special case where the loads and

strengths are represented as normal random variables. The overall structural

reliability is found by taking the product of the reliabilities of the individual

groups, as in Equation 129. This computation is implemented in the FSR computer

program.

The most accurate reliability analysis which can be performed takes into

account the correlations between structural loads and the correlations between

structural material strengths. When the number of elements to be considered in

an analysis is low, say about four, then this accurate approach can be taken.

The correlation coefficients between structural material strengths can be esti-

mated using Equations 124 through 129. The correlation coefficients between

loads are obtained as described in the previous paragraph. With this infor-

mation, the pdf of Equation 123 can be established and this can be numerically

integrated. The procedure for doing this is outlined in Reference 3 for the

case where the load and strength random variables are normally distributed.

This numerical procedure is implemented in the FSR computer program.

A practical feature of the FSR computer program is that the reliability can

be computed for a complex structure in which the components can be divided into

three types of groups. The first group type contains elements, with uncorre-

lated strengths, that are loaded with uncorrelated loads. The second group type

contains elements, with uncorrelated strengths, that are loaded with arbitrarily

correlated loads. The third type has elements, with arbitrarily correlated

strengths, that are loaded with arbitrarily correlated loads. In all groups the

loads and strengths are uncorrelated.

In establishing the capability to analyze structures whose loads and

strengths are normally distributed, we also establish the capability to analyze

structures whose loads and strengths are lognormally distributed. To use the

FSR computer program to analyze problems where the loads and strengths are

lognormally distributed, we simply input the mean values and variances of the
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logarithms of the load and strength random variables. The transformation of the

mean and variance of a random variable into the mean and variance of the

logarithm of the random variable can be accomplished using Equation 62. When

correlation coefficients are used in a lognormal reliability analysis, the

correlation coefficients must be entered between the logarithms of the random

variables under consideration, in order to be strictly correct. It can be

shown, though, that the correlation coefficient between the logarithms of two

random variables is well approximated by the correlation coefficient between the

two random variables themselves. An improved approximation is given in

Reference 3.
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III. INPUT FOR THE FSR COMPUTER PROGRAM

This section describes the inputs that must be used to execute the two

types of analyses done by the computer program, FSR. The explanations provided

here are summaries of the material presented in Appendix A of Reference 3.

1. RELIABILITY ANALYSIS OF COMPLEX STRUCTURES

First, outline one form of the input that can be used to perform a reliabi-

lity analysis of a complex structure. The analyst wishing to use FSR should

consult Appendix A in Reference 3 for alternate forms of input. Table 3 lists

the card inputs for FSR. An explanation for every input in the table is given

immediately following the table. When more than one card may be needed to enter

the data, this is noted. Numerical data inputs may be separated by commas or

spaces. Where required, a note is included to indicate that the input should be

an integer (numerical constant entered without a decimal point). NTOTAL is the

total number of components considered in the analysis of the structure. NTOTAL

must be a number lower than 2000.

Some numerical examples demonstrating the use of this part of the FSR com-

puter program with the inputs, described in Table 3, are given in Section IV.

2. COMPONENT FACTOR OF SAFETY AND RELIABILITY

The computer program FSR can be used to execute a second type of analysis.

This is a computation of the factor of safety of a single structural component.

Option 1 of the program computes the factor of safety for the case where the

load and strength probability distributions are both normal or both loqnormal.

This involves evaluation of an expression provided in Reference 3. Option 2 of

the program computes the factor of safety for the case where the load and

strength probability distributions are chosen from a list including the normal,

lognormal and extreme value Type 1 distributions, and others listed in Appendix

A, Reference 3. The load and strength probability distributions need not be the

same.

Describe the input for Option 1 of the program, first. The cards needed to

run Option 1 are listed in Table 4. An explanation of each card is given imme-

diately following the table. The format that must be used for the input is

listed with each card.
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TABLE 3. INPUT DATA CARDS FOR STRUCTURAL RELIABILITY
ANALYSIS USING FSR

E

Card 1 FSR3

Card 2 1, NUNC, NCORR, MAXM, NEOM
(These are integers)

Card 3 NRHO(1), NRHO(2), ... NRHO(NEQM)
(These are integers. Multiple cards may be needed. If NEOM = 0,
enter zero (0).)

Card 4 RHOL(1), RHOL(2), ... RHOL(NEOM)
(Multiple cards may be needed. An additional card (or set of cards)
may be required following card 4. The requirement is explained below
under "RHOL(I)." If NEOM = 0, enter a zero (0).)

Card 5 A(1,1), A(1,2), ... A(1, NCORR), A(2,2), ... A(2, NCORR), ... A(NCORR,
NCORR) (Multiple cards may be needed. If NCORR = 0, skip cards 5 and
6).

Card 6 B(1,1), B(1,2) ... B(1, NCORR), B(2,2), ... B(2, NCORR), ... B(NCORR,
NCORR) (Multiple cards may be needed).

Card 7 SVS(NCORR + 1), SVS(NCORR + 2) ... SVS(NTOTAL)
(Multiple cards may be needed if NCORR = NTOTAL, skip cards 7 and 8.)

Card 8 SVL(NCORR + 1), SVL(NCORR + 2), ... SVL(NTOTAL)
(Multiple cards may be needed.)

Card 9 MUS(1), MUS(2), ... MUS(NTOTAL)
(Multiple cards may be needed.)

Card 10 MUL(1), MUL(2), ... MUL(NTOTAL)
(Multiple cards may be needed.)

The input terms are defined as follows:

NUNC The number of components whose strengths are uncorrelted with the
strengths of other components and whose loads are uncorrelated.

NCORR The number of components whose strengths are arbitrarily correlated
and whose loads are arbitrarily correlated. (This should be limited
to four.)

MAXM This parameter limits the number of terms which can be included in a
series solution of Equation 123; it should be shown as 4.
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TABLE 3. (Continued)

NEOM The number of groups of components whose strengths are uncorrelated
and whose loads are equally correlated.

NRHO(I) The number of components in the Ith group of components whose
strengths are correlated and whose loads are equally correlated.

RHOL(I) The correlation coefficient of the Ith group of components whose
strengths are uncorrelated and whose loads are equally correlated.
For each number on card 4 which is negative, an additional card (or
cards) must be included following card 4. This additional card indi-
cates the polarity of the load random variables in a particular group
by a +1.0 or -1.0. On each of the additional cards a sequence of
+1.0's and -1.0's is listed showing the sign of the correlation
coefficient between the first component in the group and each other
component in the group. For example, let a group be composed of four
components and let the correlation coefficients between the load on
the first component and the loads on the other components be P12

-0.5, P13 = -0.5, P14 a 0.5. Let the group be numbered 8. Then
RHOL(8) = -0.5, and a card corresponding to this correlation coeffi-
cient would be included following card 4, and on this card the
following numbers would appear.

+1.0 -1.0 -1.0 +1.0

(The first +1.0 shows the sign of the correlation of the load on the
first component with itself; this is always +1.0.)

A(I,J) The element in the Ith row and jth column in the loads covariance
matrix for the structural components with arbitrarily correlated
loads and strengths. The entire matrix is shown below. Only the
upper triangle of the matrix is read in.

A(1,1) A(1,2) ... A(1,NCORR)
A(2,1) A(2,2) ..... A(2,NCORR)

L A(NCORR, 1) A(NCORR,2) ... A(NCORR,NCORR)

i The first row, from A(1,1) to A(1,NCORR), is read in first. The
second row, from A(2,2) to A(2,NCORR), is read in next, etc.

7
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TABLE 3. (Continued)

B(IJ) The element in the Ith row and jth column in the strength covariance
matrix for the structural components with arbitrarily correlated loads
and strengths. The entire matrix is shown below. Only the upper
triangle of the matrix is read In.

B(1,1) B(1,2) ..... B(1,NCORR)

8(2,1) B(2,2) ..... B(2,NCORR)

* 0

B(NCORR,1) B(NCORR,2) ... B(NCORR,NCORR)

SVS(I) The var-ance of the strength of the Ith component not Included on

card 6, above.

SVL(I) The variance of the load, on the Ith component not included on card 5,

above.

MVS(1) The mean strength of the Ith component.

MUL(I) The mean load on the Ith component.
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TABLE 4. COMPONENT FACTOR OF SAFETY FOR NORMAL-NORMAL
AND LOGNORMAL-LOGNORMAL CASES

FORMAT

Card 1 FSR1 (A4)

Card 2a TITLE (A5)
"Print case title here" (8AlO)

Card 3a TYPE 03 (A5, AIO)

Card 4a LP D4 (A5, AIO)

Card 5a PF D5.1 D5.2 D5.3 (A5, 110, 2F10.O)

Card 6a PL D6.1 D6.2 D6.3 (A5, 110, 2F10.O)

Card 7a PA D7.1 D7.2 D7.3 (A5, 110, 2F10.O)

4 Card 8a VL D8.1 D8.2 D8.3 (A5, 110, 2F10.O)

Card 9a VS D9.1 D9.2 09.3 (AF, 110, 2F10.O)

Card 10a XN 010.1 D10.2 DI0.3 (AF, 110, 2FI0.O)

Card Ila RUN (A3)

Card 12 END (A3)

The card titles and parameters are described as follows.

TITLE Optional card. Causes the title on the following card to be
read and printed as the case title.

TYPE Distribution to be used in the factor of safety computation.

03 Set to NOR or LOG - Causes program to compute the factor
of safety for the normal load - normal strength case or
the lognormal load - lognormal strength case.

LP Lines per page.

D4 The integer number of calculations to be printed on a page.

PF Component probability of failure.

D5.1 The number of incremental values of PF where the factor
of safety is computed.

05.2 The lowest value of PF where the factor of safety is
computed.
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TABLE 4. (Continued)

D5.3 The largest value of PF where the factor of safety is
computed.

(If D5.1 0 0, then the factor of safety is computed for PF = D5.2, only.
Otherwise, the factor of safety is computed at D5.1 + 1 equally spaced
values between 05.2 and D5.3, inclusive.)

PL The probability that the random input load will not exceed
the design limit load.

06.1
D6.2 Same description as D5.1 through D5.3 for PL rather
D6.3 than PF.

PA The probability that the random component strength will exceed
the design strength.

07.1
D7.2 Same description as D5.1 through D5.3 for PA rather
07.3 than PF.

VL The coefficient of variation of the component load

08.1
D8.2 Same description as 05.1 through D5.3 for VL rather
08.3 than PF.

VS The coefficient of variation of the component strength.

D9.1
09.2 Same description as D5.1 through 05.3 for VS rather
D9.3 than PF.

XN This is a coefficient of uncertainty that is used as a
multiplier of the structural load. If the accuracy of the
estimates of the load parameters is in doubt, set this equal
to a number greater than 1.0. This causes the reliability
to be conservative. When we are reasonably sure that there
is no error in the load parameters, we set XN equal to 1.0.

010.1
D10.2 Same description as D5.1 through D5.3 for XN rather
D10.3 than PF.
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Multiple cases can be run by repeating any or all of the cards 2a through 10a,

and following these by a RUN card. These repeated cards must be placed between

cards 11a and 12. Only those parmeters which are to be changed need to be

listed.

Numerical examples demonstrating the use of this option of FSR are given in

Reference 3.

Option 2 of the FSR program is similar to the option described above,

except that probability distributions for load and strength other than normal-

normal and lognormal-lognormal are available. Reference 3 gives a complete list

of the probability distributions available for use in factor of safety com-

putations. Three of these are the normal, lognormal, and extreme value Type I

distributions. In this option, similar information to that listed above is pro-

vided, except that here, the probability of failure cannot be specified.

Rather, it is computed by the program and given as output in addition to the

factor of safety. The cards necessary to run Option 2 are listed in Table 5.

An explanation for each variable is given immediately following the table. The

input format is listed with each card.

Multiple cases can be run by repeating any or all of the cards 2a through

12a, and following these by a RUN card. These repeated cards must be placed

between cards 14a and 15. Only those parameters which are to be changed need be

listed.

Numerical examples demonstrating the use of this option are given in

Section IV.
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TABLE 5. COMPONENT FACTOR OF SAFETY FOR MIXED
LOAD-STRENGTH CASES

Format

Card 1 FSR2 (A4)

Card 2a TITLE (A5)
"Print case title here" (8A10)

Card 3a NPS D3 (A5, 110)

Card 4a NPL D4 (A5, 110)

Card 5a NPI D5 (AS, 110)

Card 6a PDS D6.1 06.2 D6.3 (A5, AIO, 2F10.O)

Card 7a PDL D7.1 D7.2 D7.3 (A5, AIO, 2F10.O)

Card 8a PA D8 (AS, FIO.O)

Card 9a PL D9 (AS, F1O.O)

Card 10a XN 010 (AS, F1O.O)

Card 11a NI DIli (AS, 110)

Card 12a IU D12 (AS, F1O.O)

Card 13a IL D13 (As, F1O.O)

Card 14a RUN (A3)

Card 15 END (A3)

Card titles and parameters are described as follows.

TITLE Optional card. Causes the title on the following card
to be read and printed as the case title.

NPS Optional card. Sets the option for printing a table of
the strength distribution.

03 The ordinal number indicating which points in the
table of computed values are printed; i.e., every
D3t-h value is printed.

NPL Optional card. Sets the option for printing a table of
the load distribution.

D4 The same as 03.

NPI Optional card. Sets the option for printing a table of
the integration calculations.

05 The same as D3.
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TABLE 5. (Continued.)

PDS Strength probability distribution.

D6.1 Selects distribution. Must be set to

NORMAL
LOGNORMAL
EXTREMALI

(For other distributions see Reference 3.)

D6.2 Mean of the strength random variable.

D6.3 Coefficient of variation of the strength random
variable.

PDL Load probability distribution.

4 D7.1 Same as D6.1
D7.2 Mean of the load random variable.
D7.3 Coefficient of variation of the load random variable.

PA The probability that the random component strength will
exceed the design strength.

D8 Probability value.

PL The probability that the random input load will not exceed
the design limit load.

D9 Probability value.

XN Coefficient of uncertainty, described folidwtng Table 4.

D1O Value of coefficient of uncertainty.

NI Integration constant.

Dli The number of intervals to be used in the numerical
integration.

IU Integration constant.

D12 Upper limit of the numerical integration.

IL Integration constant.

D13 Lower limit of the numerical integration.
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IV. NUMERICAL EXAMPLES

Three numerical examples are presented in this section. The first example

solves a reliability problem which was first solved by the author in 1977 using

a totally different reliability analysis approach. It was solved later by

Shevlin and Rodeman using FSR and a certain set of assumptions. The second

problem considers the reliability of one part in a wing pylon supporting six Air

Launched Cruise Missiles. The third problem shows the effect on factor of

safety caused by use of various assumptions for the load and strength probabi-

lity distributions.

1. RELIABILITY OF THE MAU-12 BOMB RACK

The reliability of the MAU-12 bomb rack is analyzed in this example. The

approach used in analysis in this problem is a simplified form of that used in

Reference 8; therefore, the problem description follows that of Reference 8.

Figure 10 shows an overall view of the rack, and details are shown in Figures 11

through 15. The rack is loaded at 14 different points; the load points and

moments of the random load are listed in Table 6. Loads 15 through 18 are

linear combinations of the other loads. The load at each point is a stationary

random process and is the result of aerodynamic turbulence excitation of the

bomb. The random process lodds are discussed in detail in Reference 8. Using

the procedures of paragraph 11-2, find the moments of the peak loads. These are

listed in Table 6 and are obtained from information presented in References 8

and 9. Specifically, the values of ax, Ux and E[N+(O)] are taken from Refer-

ences 8 and 9. For each load, u is found using Equations 79 and 80. The

spectral densities are found in Reference 8; the input duration, T, is 10 s; and

a is found using Equation 81. These are used to find uz and az in Equation 78;

8. Meyer, S. D. and Paez, T. L., "Measurement of Suspension Loads and
Determination of Suspension Reliability for a Store in the F-111 Weapons
Bay," Fourth Aircraft/Stores Compatibility Symposium Proceedings, Volume 2,
JTCG/MD WP #12, Sponsored by: Joint Technical Coordinating Group for Muni-
tions Development, Fort Walton Beach, Florida, October 1977.

9. Shevlin, B. E. and Rodeman, R., "Evaluation of the Design Factors Program,"
AFWL-TR-79-89, Air Force Weapons Laboratory, Kirtland AFB, NM, October 1379.
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1 ~~MAU-12C/A ', .\

VERTICAL CHOCK
HORIZONTAL CHOCK

SWAYBRACE

VERTICAL CHOCK-TYPICAL
EACH END OF BOMB RACK

Figure 10. Overall view of the MAU-12 bomb rack.

SEE WPNS BAY

SHEET 2
AUX VENT CHOCK

- 1.00OIA 

Figure 11. Vertical chock (drawing courtesy of General Dynamics).
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S"G" SEE STEP 2.2.8 VPNS
4 BAY INST STLEET 2

*A21 P2/A

REF HO

FULL RAD RI3.85 MAX4
-- .2 2 0*~R *7.

4. 4.0

Figure 13. Same lug rotated 90 degrees counterclockwise
(General Dynamics).
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4.245 TRUE RF

11101TRACE

SEE WPNS SAY
IS BGINSTI NOTES-

SHEET 2

Figure 14. Horizontal chock (General Dynamics).

4. 05t.1 2
REF

I. n-

Figure 15. Top view of (from left) vertical chock, horizontal chock,
4 and swaybrace (General Dynamics).
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ax 2is found using Equation 75. The mean and variance of the nonnormalized peak

loads are found using Equation 91.

The potential failure points are determined by considering each structural

element separately. The swaybrace shown in Figure 10 is comprised of three

fundamental elements; the swaybrace arms, the 1/2-in-diam bolt supporting the

swaybrace pad, and the bomb casing. The casing of the MAU-12 rack is also con-

sidered a structural element. The vertical chock (Figure 11) is comprised of

five fundamental elements: the 5/16 in-diam ball-lok pin, the 3/8 in-diam ball-

lok pin, the 1/2 in-diam aircraft bolt, the bomb casing, and the brace sup-

porting the vertical chock. The lug and bomb, shown in Figures 12 and 13 are

considered as a single element of the structure. The hook seen in Figure 13 is

also a single structural element. The horizontal chock, Figure 14, is comprised

of six fundamental structural elements: the 7/16-in-diam bolts which support

the pawls, the 1/2-in-diam bolt which tightens down the inner pawl, and the lock

frame.

Note that, instead of considering the bomb casing as a single structural

element subject to several loads, each section where the bomb casing is loaded

is considered to be a structural element for the device which produces the load;

i.e., the section of the bomb casing near the vertical chock is considered to be

an element in the vertical chock assembly, whereas the section of the casing

near the swaybrace areas is considered to be part of the swaybrace assembly.

With the exception of the lugs and the rack frame, each structural com-

ponent has one load and one failure point. The lugs must carry both vertical

and horizontal loads. The rack frame is loaded by the hooks and the swaybrace

arms. A list of individual structural components is given in Table 7 and the

loads on each component, from Table 6, are also listed.

The strength data were acquired from a variety of sources. These included

handbooks, experiments, manufacturers, and finite-element analysis. In par-

ticular, the failure loads of the ball-lok pins were obtained from

manufacturer's data, whereas the failure loads of the lugs and bomb casing were

determined experimentally. The failure loads of the hooks and the various bolts

were obtained from handbooks and/or specification. The failure loads of the

* swaybrace arms, and the horizontal chock frame and the rack frame (both in the

areas which support the hooks and to which torque is applied by the swaybraces)
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TABLE 7. MAU-12 ASSEMBLY COMPONENT LOADING

Loading on
Component

Component Description (See Table 6)

1 Bolt which tightens down the inner pawl of the 2

horizontal chock

2 Frame of the forward horizontal chock 2

3 Bolt supporting the inner pawl of the forward 2
horizontal chock

4 Bomb casing at forward vertical chock pad 3

5 5/16-in ball-lok pin in the forward vertical chock 3

6 3/8-in ball-lok pin in the forward vertical chock 3

7 Frame of the forward vertical chock 3

8 Bolt supporting the forward vertical pad 3

9 Bomb casing at the fwd left swaybrace pad 4

10 Fwd left swaybrace bolt 4

11 Fwd left swaybrace arm 4

12 Bomb casing at the fwd right swaybrace 5

13 Fwd right swaybrace bolt 5

14 Fwd right swaybrace arm 5

15 Fwd lug (vertical load) 7

16 Fwd hook (vertical load) 7

17 Rack frame supporting fwd hook 7

18 Bolt which tightens down the inner pawl of the 9
aft horizontal chock

19 Frame of the aft horizontal chock 9

20 Bolt supporting the inner pawl of the aft 9
horizontal chock

21 Bomb casing at the aft vertical chock pad 10

22 5/16-in ball-lok pin in the aft vertical chock pad 10

23 3/8-in ball-lok pin in the aft vertical chock pad 10
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TABLE 7. (Continued.)

Loading on
Component

Component Description (See Table 6)

24 Frame of the aft vertical chock 10

25 Bolt supporting the aft vertical chock pad 10

26 Bomb casing at the aft left swaybrace pad 11

27 Aft left swaybrace bolt 11

28 Aft left swaybrace arm 11

29 Bomb casing at the aft right swaybrace pad 12

30 Aft right swaybrace bolt 12

31 Aft right swaybrace arm 12

32 Aft lug (vertical load) 14

33 Aft hook (vertical load) 14

34 Rack frame supporting the aft hook 14

35 7/16-in bal1-lok pin in the forward horizontal 17
chock

36 1/2-in ball-1ok pin in the forward horizontal 17
chock

37 7/16-in ba11-lok pin in the aft horizontal chock 18

38 1/2-in ball-lok pin in the aft horizontal chock 18

39 Bolt supporting the outer pawl of the fwd horizontal I
chock

40 Forward lug (lateral load) 6

41 Bolt supporting the outer pawl of the aft horizontal 8
chock

42 Aft lug (lateral load) 13

43 Rack casing subject to twisting at the fwd swaybrace 15

44 Rack casing subject to twisting at the aft swaybrace 16
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were determined from the handbook material strength values and elementary solid

mechanics formulas. However, the vertical chock frame was not suitable for an

elementary stress analysis and was analyzed by the ADINA finite-element code.

The finite-element analysis used to define the strength of the vertical chock

frame is detailed in Reference 7. The mean and the variance of the strength of

each component are listd in Table 8.

The moments of the peak load on each structural component are also listed

in Table 8, based on the information given in Tables 6 and 7.

To determine which components should be included in the reliability analy-

sis, the reliability index for each component is computed using Equation 117.

The lowest reliability index is 8.0, and this applies to the components numbered

16 and 33, the fore and aft hooks. Since the value, 8.0, does not appear in

Table 2, the formula in Table 2 may be used to determine the range of reliabi-

lity indices which must be considered in the analysis. It is found that q is
mi 8.58; therefore, components with reliability indices in the interval (8.0, 8.58)

must be included in the analysis. This means that only the two elements, 16 and

33, need be included in the analysis. To be conservative, include those ele-

ments in the range (8.0, 10.0) in the FSR reliability analysis.

Even though some of the input loads and component strengths are correlated,

in this problem it is assumed that all loads and strengths are uncorrelated.

(Loads are correlated here since some loads pass through one component to load

another. Strengths are correlated since some single components, loaded in dif-

ferent directions or different modes, are assumed to be two separate

components.) The inputs used in the FSR program are listed in Table 9. Loads

and strengths are assumed to be normally distributed. The computer program out-

put indicated that the structural reliability is 1.f00000000000000.

It is easy to solve this problem by hand if we consider only the two least

reliable elements, 16 and 33, the forward and aft hooks. Using the data in

Table 8 and Equation 51, the reliability of one hook is

R = 4(R.0) = 1 - (0.5 x in -18) (131)

The joint reliability of two components like this is simply the square of

this quantity. The predicted structural reliability is

R = [I - (0.5 x in-1 8 ) 2  I - 1 8"I' (132)
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TABLE 8. COMPONENT LOAD AND STRENGTH MOMENTS

Mean Variance Mean Variance
Component Strength of Strength Load of Load
Number (kips) (kips (kips) (kips2 )  q

1 83.8 44.9 3.82 0.0052 11.9

2 90.0 20.3 3.82 0.0052 17.8

3 20.0 1.0 3.82 0.0052 16.1

4 10.0 0.3 1.72 0.0253 14.5

5 13.8 0.5 1.72 0.0253 16.7

6 21.3 1.1 1.72 0.0253 18.5

7 19.5 3.8 1.72 0.0253 9.1

8 83.8 44.9 1.72 0.0253 12.2

9 25.0 1.6 4.11 0.0038 16.5

10 83.8 44.9 4.11 0.0038 11.9

11 64.6 41.7 4.11 0.0038 9.4

12 25.0 1.6 4.31 0.0038 16.3

13 83.8 44.9 4.31 0.0038 11.9

14 64.6 41.7 4.31 0.0038 9.3

15 25.0 1.6 8.99 0.0392 12.5

16 45.0 20.3 8.99 0.0392 8.0

17 28.0 2.0 8.99 0.0392 13.3

18 83.8 44.9 3.94 0.0046 12.0

19 90.0 20.3 3.94 0.0046 19.1

20 20.0 1.0 3.94 0.0046 16.0

21 10.0 0.3 1.29 0.0119 15.6

22 13.8 0.5 1.29 0.0119 17.5

23 21.3 1.1 1.29 0.0119 19.0

24 19.5 3.8 1.29 0.0119 9.3

25 83.8 44.9 1.29 0.0119 12.3

26 25.0 1.6 4.20 0.0050 17.2

27 83.8 44.9 4.20 0.0050 11.9

28 64.6 41.7 4.20 0.0050 9.3

29 25.0 1.6 5.49 0.0123 15.4

30 83.8 44.9 5.49 0.0123 11.7
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TABLE 8. (Continued)

Mean Variance Mean Variance
Component Strength of Strength Load of Lold
Number (kips) (kips ) (kips) (kips ) q

31 64.6 41.7 5.49 0.0123 9.1

32 25.0 1.6 8.85 0.0350 12.6

33 45.0 20.3 8.85 0.0350 8.0

34 28.0 2.0 8.85 0.0350 13.4

35 28.6 2.0 0.56 0.0028 19.8

36 37.4 3.5 0.56 0.0028 19.7

37 28.6 2.0 0.83 0.0069 19.6

38 37.4 3.5 0.83 0.0069 19.5

39 20.0 1.0 2.72 0.0052 17.1

40 10.0 0.3 1.89 0.0190 14.3

41 20.0 1.0 4.90 0.0225 14.9

42 10.0 0.3 2.19 0.0313 13.6

43 200.0 (In-k) 400.0 (in-k)2  4.27 (in-k) 0.1624 (in-k)2 9.8

44 200.0 (In-k) 400.0 (In-k)2  6.14 (in-k) 0.3648 (In-k)2 9.7
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This result agrees with the result obtained using FSR. Both results show that

there is practically no possibility that the MAU-12 bomb rack will yield at any

point due to the aerodynamic input.

If it had been assumed that failure of the structure occurs at some point

lower than the yield level, then the predicted structural reliability would be

lower. A practical reason why this assumption might be made is the following.

When a structural component is excited over a long period of time, it may fail

in fatigue. The load stress level which causes failure in fatigue is a stress

which is greater than the endurance limit and lower than the yield level. If

the analyst wishes to obtain extremely conservative results, he can assume that

failure occurs when the load stress surpasses the endurance limit. Less con-

servative results can be obtained by assuming that failure occurs at a level

between the endurance limit and the yield level.

This numerical example demonstrates an important point in reliability ana-

lysis. That is, we are often interested in finding the reliability of a struc-

tural system which is composed of many structural components, and which is,

itself, a subsystem of a large system. The MAU-12 bomb rack is a subsystem of

the airplane to which it is attached, and it is composed of many structural com-

ponents. When it can be assumed that the subsystem and the larger system of

which it is a part, act independently, then the overall system reliability is

the product of the subsystem reliability and the reliability of the remainder of

the system. Even when this assumption is not strictly correct, the product of

reliabilities provides a lower bound on the true reliability of the overall

system.

The following example shows how the reliability of a component in the B-52

ALCM pylon can be calculated.

2. RELIABILITY OF ALCM PYLON COMPONENT

A pylon for use on B-52G aircraft for carrying ALCMs (Air Launched Cruise

Missiles) has been designed. A deterministic analysis of the loads to be

carried by the pylon is presented in Reference 10. A summary of deterministic

10. Heffron, C. J. and Clements, R., "Preliminary Loads Report, CM1," CDRL Seq.

No. 066 01-S-30588, Boeing Wichila Company, FSCM No. 82918, August 1978.

91



AFWL-TR-81-111

structural analysis on the pylon is presented in Reference 11. This analysis

calculates the reliability of the forward pylon/support fitting lug Din. The

reason we analyze this element is that deterministic analysis has shown that the

lug pin has a margin of safety equal to 0.02. The lug pin is made from 15-5 PH

stainless steel. The properties of this material are given in Reference 12.

The material strength properties are not presented on a statistical basis;

rather they are presented as "producers guaranteed minimum tensile properties."

The material properties listed in Reference 12 for this material are given in

Table 10. One can infer statistical characteristics for the strength of this

material as follows. Assume, first, that the strength properties are values

above which 99 percent of the test outcomes are expected to fail. Second, we

assume that the coefficients of variation of the strength properties are similar

to those of other materials for which statistical data are available. From

Reference 10 the coefficients of variation of ultimate tensile strength, Ftu,

tensile yield strength, Fty, and shear strength, Fsu, for stainless steels which

are statistically characterized are given by the average values:

For Ftu : coy = 0.034 (133a)

For Fty : coy = 0.067 (133b)

For Fsu : coy = 0.038 (133c)

With these assumptions and Equation 133, the statistical strength properties of

15-5 PH stainless steel can be found. These are listed in Table 10. The mean

strength values have been multiplied by a factor of 0.95 to account for a 160°F

environment. A sketch of the pin and the lugs which load it is shown in Figure

16. An analysis contained in Reference 9 shows that the values of a and b, in

the sketch, which maximize the moment in the pin are

a = 0.12 in b = 0.0 in (134a)

11. Roberts, H. M., "Pylon Stress Analysis, Vol. I," CDRL Seq. No. 069 (DI-S-
3581), Boeing Wichita Company, FSCM No. 82918, August 1978.

12. MIL-HDBK-5C, Military Standardization Handbook, Metallic Materials and
Elements for Aerospace Vehicle Structures, Vols. 1 and 2, Department of
Defense, Washington, D.C., 20025.
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TABLE 10. MATERIAL PROPERTIES FOR 15-5 PH STAINLESS STEEL

SPECIFICATION AMS5659

FORM BARS AND FORGINGS

CONDITION H1025

THICKNESS OR DIAMETER LESS THAN 12 IN

BASIS S

TENSILE ULTIMATE Ftu = 155 ksi

TENSILE YIELD Fty = 145 ksi

COMPRESSIVE YIELD Fcy = 143 ksi

SHEAR ULTIMATE Fsu = 97 ksi
I

BEARING ULTIMATE Fbru = 220 ksi (e/D = 1.5)
285 ksi (e/D = 2.0)

BEARING YIELD Fbry = 189 ksi (e/D = 1.5)
222 ksi (e/D = 2.0)

FAILURE STRAIN e = 12 PERCENT (L DIRECTION)
8 PERCENT (T DIRECTION)

ELASTIC MODULUS E = 28.5 x 103 ksi

ELASTIC MODULUS (COMPR) Ec = 29.2 x 103 ksi

SHEAR MODULUS G = 11.2 x 103 ksi

POISSONS RATIO V = 0.27

Statistical Properties of i5-5 PH Stainless Steel (160 0 F)

Coefficient of
Average Variation

Tensile Ultimate Stress 154.7 0.034

Tensile Yield Stress 151.8 0.067

Ultimate Shear Stress 101.1 0.038
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Figure 16. Forward pylon/support fitting lug pin

for B-52 ALCM pylon.

These imply that e and x, in the sketch, have values

= 0.815 in x = 0.102 in (134b)

When it is assumed that the lugs supporting the ends of the pin act as simple

supports, the maximum moment and shear in the lug pin are

M = 0.5 P (135a)

S = 0.5 P (135b)

where M is moment, S is shear, and P is the load on the pin. It has been dc'.er-

mined in References 10 and 11 that the most severe load on this particular ele-

ment occurs due to a lateral 2 g acceleration. The total load exciting a

bending response in the pin is

P = 151.6 kips (136)

Accordingly, the maximum applied bending moment and shear load are

M = 61.8 in - k (137a)

S = 75.9 kips (137b)
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These are the values obtained in the analysis of Reference 11. It will be

assumed that the loads are deterministic.

Following the methodology used in Reference 11 for obtaining the ultimate

moment resistance of the lug pin in bending, write

MR = FBZ (138)

Where MR is moment resistance, FB is the bending modulus of rupture, and Z is

the section modulus given by

Z = 1ird3 = 0.329 in3  (139)

32

where d = 1.4965 is the pin diameter. FB is given by

FB Ftu + Fty (K -1 ) (140)

where K = 1.7 is a constant which depends on cross-sectional shape. F8 can be

simplified to

FB = Ftu + 0.7 Fty (141)

FB is a random variable which is the sum of two other random variables, Ftu and

0.7 Fty. The mean and the variance of FB are

FB- UFtu + 0.7 uFty = 261.0 (142a)

2 2 + 0.49 F = 86.86 (142b)

OF = Ftu +0. ty

where Ftu and Fty are assumed to be independent. Assume that the bending modu-

lus of rupture, FB, is normally distributed; therefore, the random variable is

completely specified. (Mean, variance, distribution). The statistical moments

(mean and variance) of the structural moment resistance of the lug pin in

bending, MR, can be obtained using Equations 138 and 142. These are

'MR = 0.329 PFB = 85.9 (143a)

am = O.Ina 2 = 9.40 (143b)MR  °FB

Since FB is a normal random variable, MR is also normal.

The shear resistance of the lug pin is
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SR Fsu A (144)

where A = 1.759 in2 is the cross-sectional area of the pin. SR is a random

variable and is a simple linear function of Fsu* The mean and variance of

SR are

1S 1.759 'IF = 177.8 kips 
(145a)

as 2 a 3.094 2 = 45.7 (kips)2  (145b)
R  su

We assume that the shear resistance is a normal random variable.

In the reliability analysis of the lug pin, assume that the pin acts as two

components, one in bending and one in shear. The shear load and the bending

moment are perfectly correlated, since they both depend on P. It would be

reasonable to assume that the shear and bending resistance are strongly

correlated; but, in the preliminary analysis, we assume that all these items are

uncorrelated. Since only two components are involved, they are both considered

in the analysis. As stated earlier, the moment and shear loads would be con-

sidered deterministic. This can be interpreted as meaning that the applied

moment and shear are random variables with means

m= 61.8 in - k (146a)

S = 75.9 kips (146b)

and zero variances

2am  = 0 (147a)

s = 0 (147b)

A deterministic constant is a random variable, with mean equal to the constant,

and zero variance. We assume that the loads and strength are normal random

variables. Then the structural reliability is computed using Equations 57 and

121.

R = R1 • R2 - 85.9 - 61.8) (177.8 - 75.8) (148)

(19.40 V 45.7 /

• (1 - 2 x 1018) (1 - 2.3 x 10 6 W)

- (1 - 2 x 10
)18

96

I



AFWL-TR-81-111

The reliability of the system is very high. For the situation considered, no

practical possibility of failure exists, even though the margin of safety is

very low.

A somewhat more accurate result could be obtained by taking into account

the correlation between the moment and shear loads. The result of that analysis

would yield a higher reliability than that given above.

3. COMPARISON OF LOAD AND STRENGTH PROBABILITY DISTRIBUTIONS

It was pointed out at the end of paragraph I-I that, when different proba-

bility distributions are assumed to govern the load and strength of a structural

component, the computed point reliabilities for the component may differ signi-

ficantly. To demonstrate this point further, consider the system component

which has random strength with mean value 25.0 kips and coefficient of variation

0.1, and load with mean value 10.0 kips and coefficient of variation 0.2. The

allowable load for the component is defined so that the probability that the

actual load does not exceed the allowable is 0.99. The design strength is

defined in such a way that the probability that the actual strength exceeds the

design strength is 0.99. Given this information, the reliability and factor of

safety between design strength and allowable load are computed for every com-

bination of the assumed load and strength distributions which can be obtained

using the normal, lognormal, and extreme value Type I distributions. Table 11

defines those combinations of distributions that can be used and shows the fac-

tor of safety and reliability results that were obtained using the computer

program FSR2. The input used to run FSR2 follows the specification given in

paragraph 111-2. The input for the specific problem listed above is given in

Table 12.
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TABLE 11. FACTORS OF SAFETY AND RELIABILITIES OBTAINED
USING VARIOUS LOAD AND STRENGTH ASSUMPTIONS

Factor of

Case No. Load cdf Strength cdf Safety Reliability

I Normal Normal 1.31 1-2.20 x 10"

2 Lognormal Lognormal 1.27 1-3.43 x 10- 5

3 Extremal 1 Extremal 1 1.28 1-1.04 x 10- 3

4 Normal Lognormal 1.23 1-2.27 x 1o- 5

5 Normal Extremal 1 1.18 1-1.35 x 10 "

6 Lognormal Normal 1.35 1-2.13 x 10"

7 Lognormal Extremal 1 1.21 1-1.34 x 10"

8 Extremal 1 Normal 1.43 1-9.51 x 10-4

9 Extremal 1 Lognormal 1.34 1-9.57 x 10-

Load Mean = 10.0 coy = 0.2
Strength Mean - 25.0 cov a 0.1
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TABLE 12. INPUT FOR EXAMPLE OF PARAGRAPH IV-3

FSR2

TITLE

CASE 1 NORMAL NORMAL

NPS 10

NPL 10

NPI 10

PDS NORMAL 25.0 0.1

POL NORMAL 10.0 0.2

PA 0.99

PL 0.99

XN 1.0

NI 300.0

IU 37.5

IL 0.0

RUN

TITLE
CASE 2 LOGNORMAL LOGNORMAL

PDS LOGNORMAL 25.0 0.1

PDL LOGNORMAL 10.0 0.2

RUN

TITLE

CASE 3 EXTREMALl EXTREMALI

PDS EXTREMALl 25.0 0.1

PDL EXTREMALl 10.0 0.2

RUN

TITLE

CASE 4 NORMAL LOGNORMAL

POS NORMAL 25.0 0.1

PDL LOGNORMAL 10.0 0.2

RUN

TITLE
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TABLE 12. (Continued.)

CASE 5 NORMAL EXTREMALl

PDS NORMAL 25.0 0.1

PDL EXTREMALl 10.0 0.2

RUN

TITLE

CASE 6 LOGNORMAL NORMAL

PDS LOGNORMAL 25.0 0.1

PDL NORMAL 10.0 0.2

RUN

TITLE

CASE 7 LOGNORMAL EXTREMALl

PDS LOGNORMAL 25.0 0.1

PDL EXTREMALl 10.0 0.2

RUN

TITLE

CASE 8 EXTREMALl NORMAL

PDS EXTREMALl 25.0 0.1

PDL NORMAL 10.0 0.2

RUN

TITLE

CASE 9 EXTREMALl LOGNORMAL

PDS EXTREMALl 25.0 0.1

PDL LOGNORMAL 10.0 0.2

RUN

END
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V. DISCUSSION AND CONCLUSION

This report has presented a brief introduction to structural reliability,

and a guide for the use of FSR, a structural reliability computer program. In

this chapter we discuss sources of statistical data and data requirements and

some practical aspects of reliability analysis.

An accurate reliability analysis requires an accurate statistical charac-

terization of the random loads applied to a structure and the random strength of

a structure. The strength characteristics of a structure can usually be found

through structural analysis when the characteristics of the structural material

are known. The statistical moments of the failure and yield stress have been

found for many materials. For example, References 12 and 13 contain information

on the probabilistic behavior of many materials.

Reference 12 contains information on many materials and presents it in the

following way. Let Y be a material strength random variable. (For example,

tensile yield stress, or ultimate shear stress, etc.) The handbook presents an

A basis strength, YA, and a B basis strength, yB. The YA is chosen so that 99

4percent of all material samples tested will have a strength greater than YA;

YR is chosen so that 90 percent of all material samples tested will have a

strength greater than yB. It is assumed that Y is a normally distributed random

variable; therefore, we can write

. ~2 x)z1 n .99 m .0 (149a)

. (YB-2 . 1a- 0.90 - 0.1O (149b)

These equations can be inverted and solved for YA and YB"

YA y *'(0"01) + 1y = -2 .32cy + my (149c)

YB a a y 0 1 (0.10) + 0 y a -1.28cy + ,y (149d)

where 4-(.) is the inverse function of the standard normal cdf. The values of

this function may be obtained, for example, in Table 1 of Reference 1. Given

13. Haugen, E. B., "Statistical Metals Manual," Aerospace and Mechanical

Engineering, The University of Arizona, Tucson, Ariz., 1974.
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the YA and yB values for a particular material strength, the moments of the

strength random variable can be obtained by solving Equations -19a and b,

simultaneously. The YA and YB values are chosen as 95 percent confidence

values. This means, roughly, that we are 95 percent confident that the values

chosen are conservative.

Generally, load statistics must be obtained through measurements of a spe-

cific load source. This was done, for example, in Reference 8. A few general

load sources have been conservatively modeled; for example, earthquake sources

(Ref. 14). It is certainly conceivable that a specific load source could be

characterized by a thorough study. For example, the peak loads applied to

weapons during ground handling operations could be characterized.

There are numerous practical aspects which must be considered in the

application of reliability analyses. One of the most important is the need for

finite element analyses in reliability studies. Even In an elementary reliabi-

lity analysis of a complex structure, we must find the structural member loads

induced by an external force. This can usually be done accurately with a finite

element computer program. Hithout the use of a finite element program this may

be an Impossible task. This is especially true when the load and response are

dynamic.

Another practical aspect of reliability analysis is specification of a

failure level. When true failure of a structure occurs with collapse, then it

is very difficult to find the structural reliability against true failure. The

reason is that the failure occurs only after the response has become nonlinear

in a geometric and material sense. Except when a special research study can be

performed, a conservative assumption regarding failure should be made. When the

structure under consideration will be forced through only a small number of

response cycles, then a reasonable failure level to use is the yield level.

This will provide very conservative results if the true failure occurs with

collapse. When the structure under consideration will be forced through a large

number of cycles, then a fatigue failure may occur. In this case the failure

level may be chosen as follows. Estimate the number of cycles of the response.

Use the S-N curve for the material to find the stress level which Is expected to

cause material failure after the specified number of cycles. Use this stress as
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the failure level for the material. The results obtained using this approach are

conservative since the true failure stress is always greater than that assumed

to be the failure level, up to the time when the final response cycle is exe-

cuted. An extremely conservative result can be obtained by using the endurance

limit as the failure level.

It is very rare that a structure is subjected only to loads from one random

source during its design life. Rather, a structure is subjected to many dif-

ferent random loads from many sources. To determine the reliability of a struc-

ture for all these loads, the analyst should find the probability that the

structure will survive each load separately. Then, the product of these

reliabilities forms a lower bound on the overall structural reliability. When

some of the input loads are correlated with one another, then the true reliabi-

lity is higher than this estimated figure.

Most of the numerical examples presented in this report use an assumption

of normality for the structural loads and strength. This is almost always con-

sidered a satisfactory approach, at least for preliminary analyses. In the

practical examples presentd in Section IV, the preliminary estimates of reliabi-

lity were so high that no need for further analysis was seen. This will be the

case in many practical situations. When the estimated reliability is lower, the

analyst may wish to analyze the structural reliability using the lognormal load

and strength assumptions. When this is the case, the specific approach used by

Shevlin and Rodeman in Reference 7 should be followed. Here the structural

strength is modeled using a "lognormal plus a constant" probability

distribution.

While the approaches outlined in this report can be used to find estimates

"4 for the reliabilities of structures, the probability figures obtained from the

analyses should not be taken as exact. The reason is that many assumptions have

been used in obtaining the estimates. The most important of these assumptions

should be investigated, and alternate analytic approaches that circumvent the

need for these assumptions should be sought.
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